Эволюция света. «Снятие с креста. Источники света: виды, основные характеристики и области применения Эволюция освещения

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Без светотени классическая живопись немыслима. С её помощью художники, начиная с эпохи Возрождения, превращали свои картины не просто в красивые изображения - они создавали настоящие тексты, философские трактаты.

Мастерство развивалось годами. Живопись обрела голос, заговорила со зрителями. И как наигранно стали смотреться все картины величайших мастеров на тему кающейся Магдалины, когда своё полотно на этот сюжет создал .

Проживший немало лет в трущобах, художник отлично знал, как выглядит страдающая проститутка, решившая обратится к вере. Его Магдалина действительно такова.

Её глаза опущены, на лице задумчивая скорбь, ведь, решив поменять свою жизнь, человек обращается не к небу, он задает вопрос самому себе. Это уже финал преображения, последствие бури эмоций, о которой свидетельствуют разбросанные по полу дорогие украшения. В этой блуднице нет и тени кокетства. Она полностью одета, в её платье нет ничего вызывающего.

Нет здесь и ни единого классического упоминания о святости. Нет толпы голых младенцев-херувимов, нет креста, нет неба. Перед нами мрачная комната. В мучительном исступлении, похожем на горячку, провела Магдалина всю ночь. И настало утро. Солнечный свет пока еще совсем слаб, его мягкие лучи видны только в правом верхнем углу полотна. Героиня еще не видит их. Это тот переломный момент ее жизни, когда возврат к старому невозможен, а будущее еще совсем не ясно. То самое предчувствие катарсиса, который вот-вот должен случится, когда на блудницу упадет солнечный свет. Она застыла между двумя реальностями. Её прошлое изорванными украшениями валяется на полу, а будущее только приходит к ней. А руки Магдалины? Так мать держит своего ребенка. Перед нами рождение, только не ребенка, а рождение веры.

Но настоящим мастером игры стал Рембрандт ван Рейн. Именно с его картины «Снятие с креста» мы и решили начать свой сериал.


В сериале будет 10 серий. Три из них мы посвятили .

Свет в живописи - это удивительное явление. Оно меняется, развивается, живёт своей жизнью. Свет - это то единственное, что остаётся от художника после его смерти. Свет бессмертен. Ведь тьма - это всего лишь отсутствие света. И даже, если в один момент его нет, он всегда готов пробиться в самые тёмные пространства. Вырвать из мрака то единственное, ради чего стоит жить.

В будущих выпусках мы поговорим об Иване Крамском, Михаиле Врубеле, Николае Ге, Пабло Пикассо, Винсенте ван Гоге. Это только начало пути.

Хотим сказать огромное спасибо сотрудникам Государственного Эрмитажа, без которых этот проект не увидел бы свет. Отдельное спасибо работнику пресс-службы музея Ольге Эбертс, не пожалевшей для нашего фильма ни времени, ни сил.

ГООУ «Таловская школа-интернат для детей - сирот и

детей, оставшихся без попечения родителей»

ТВОРЧЕСКИЙ ПРОЕКТ

«ЭВОЛЮЦИЯ ОГНЯ КАК ИСТОЧНИКА СВЕТА»

Чесноков Николай.

Руководитель:

учитель технологии

2. Древнее время. От лучины до свечи

3. Появление электрических источников света

4. Типы источников света

5. Обоснование выбора темы проекта

6. Технология изготовления

7. Применение изделия

8. Экономический расчет

9. Технологическая карта

10. Приложения

1. История развития источника света. 1 сентября" href="/text/category/1_sentyabrya/" rel="bookmark">1 сентября 5509 г. до н. э., когда Бог произнес: «Да будет свет!...». Правда, является ли этот источник света искусственным – вопрос спорный.

Дата появления первых источников света теряется во мраке веков, однако они явно появились не ранее, чем древние люди стали применять огонь, то есть около 500000 г. до Р. Х. (См. Табл. 1). Несомненно, что первоначально огонь использовался для приготовления пищи, пока какому-то древнему изобретателю не понадобилось заглянуть в темную пещеру.

Таблица 1. История развития источников света.

Тип источника излучения

Начало использования огня

500000 г. до н. э.

Масляные лампы и факелы.

10000 г. до н. э.

Горящие камни в Малой Азии.

4000 г. до н. э.

Серийное производство глиняных ламп с маслом.

2500 г. до н. э.

Первые свечи в Греции и Риме.

500 г. до н. э.

Водородные лампы с электрическим зажиганием.

Лампа с сурепным маслом и плоским фитилем.

Лампы на угольном газе В. Мурдоха

Итал. физик Алессандро Вольта создал первый химический источник тока

Дуга Х. Дэви

Свечение накаленной проволоки из платины или золота.

Дуга между угольными стержнями.

Свечение тлеющего разряда в опытах.

Первые газовые лампы.

Первые парафиновые свечи.

Дуговая лампа Фуко с ручным регулированием длины дуги

Керосиновая лампа Лукашевича

Немецкий изобретатель Генрих Гебель разработал первую лампочку: обугленную бамбуковую нить в вакуумированном сосуде.

Дуговые лампы с автоматическим регулированием расстояний между углями Александра Шпаковского

Лодыгин получил патент за номером 1619 на нитевую лампу. В качестве нити накала он использовал угольный стержень в вакуумированном сосуд.

“свеча” Яблочкова

Джозеф Сван получил в патент на лампу с угольным филаментом. В его лампах филамент находился в разреженной кислородной атмосфере.

Эдисон получает патент на лампу с угольной нитью.

Накаливающийся колпачок Ауэра

Газовые лампы “Газовый Рожок”

Ацетиленовая лампа

Лампа с целлюлозной нитью

Ауэр предлагает лампу с осмиевой спиралью.

Лодыгин продаёт патент на вольфрамовую нить компании General Electric

Купер-Хьюит изобретает ртутную лампу низкого давления.

Кулиджу удалось получить ковкий вольфрам

Лэнгмюр предложил наполнять лампы инертным газом

Газонаполненная лампа Лангье с вольфрамовой спиралью.

Пирани изобретает натриевую лампу низкого давления.

Кух изобретает ртутную дуговую лампу высокого давления.

Ртутная лампа высокого давления с люминофором.

Шульц предлагает ксеноновую лампу.

T8 линейная, с электронным балластом

T5 линейная

Светодиод

белый светодиод

Прототип светодиода

Дуговая лампа

Ксеноновые газоразрядные лампы

Дуговые ртутные металлогалогенные лампы

Газоразрядная лампа

Натриевая лампа высокого давления

Натриевая лампа низкого давления

Лампа на галогенидах металлов

1400Вт Серная лампа

Теоретически

возможно

Первые в истории свечи - это чаши, наполненные жиром, с фитилём или щепочкой. Первые восковые свечи появились в Средневековье. Свечи долгое время были очень дороги. Чтобы осветить большое помещение, требовались сотни свечей, они чадили, черня потолки и стены.

Масляная лампа - светильник, работающий на основе сгорания масла. Принцип действия схож с принципом действия керосиновой лампы: в некую ёмкость заливается масло, туда опускается фитиль - верёвка, состоящая из растительных или искусственных волокон, по которым, согласно свойству капиллярного эффекта масло поднимается наверх. Второй конец фитиля, закреплённый над маслом, поджигается, и масло, поднимаясь по фитилю, горит. Масляная лампа применялась издревле. В древние времена масляные лампы вылепляли из глины, или изготовляли из меди. В арабской сказке «Аладдин» из сборника «Тысяча и одна ночь» в медной лампе живёт Джинн.

Керосиновая лампа - светильник на основе сгорания керосина - продукта перегонки нефти. Принцип действия лампы примерно такой же, что и у масляной лампы: в ёмкость заливается керосин, опускается фитиль. Другой конец фитиля зажат поднимающим механизмом в горелке, сконструированной таким образом, чтобы воздух подтекал снизу. В отличие от масляной лампы, у керосиновой фитиль плетёный. Сверху горелки устанавливается ламповое стекло - для обеспечения тяги, а так же для защиты пламени от ветра. Первая керосиновая лампа была описана Ар-Рази в Багдаде IX века. Современная керосиновая лампа была изобретена аптекарями Игнатием Лукасевичем и Яном Зехом в 1853 году во Львове.

Лампа накаливания общего назначения (230 В, 60 Вт, 720 лм, цоколь E27, габаритная высота ок. 110 мм Лампа накаливания (ЛН) - электрический источник света, светящимся телом которого служит так называемое тело накала (ТН, проводник, нагреваемый протеканием электрического тока до высокой температуры). В качестве материала для изготовления ТН в настоящее время применяется практически исключительно вольфрам и сплавы на его основе. В конце XIX - первой половине XX в. ТН изготавливалось из более доступного и простого в обработке материала - углеродного волокна.

Токарные станки" href="/text/category/tokarnie_stanki/" rel="bookmark">токарном станке . В дополнение к токарным изделиям я решил продублировать каждый источник света сюжетами быта, выполненными в технике выжигания по дереву. Все изделия были объединены на одной подставке, позволяющей каждый экспонат рассматривать в отдельности.

Использование изделия.

Мое изделие можно использовать в качестве наглядного пособия на урока истории, физики, природоведения , а также на внеклассных мероприятиях и различных выставках.

ТЕХНОЛОГИЯ ИЗГОТОВЛЕНИЯ И ПРИМЕНЯЕМЫЕ МАТАРИАЛЫ.

Подставка для макета изготовлена из ламинированного ДСП, применяющегося при производстве мебели, с последующей оклейкой торцов ламинированной кромкой.

Точение макетов источников света выполнено на токарном станке по дереву СТД-120 из березовых заготовок, стандартным набором резцов.

Выжигание бытовых сюжетов я сделал на фанере толщиной 3 мм, при помощи электровыжигателя.

Для электрического светильника использованы готовые электрические детали: патрон, плафон, кабель, штепсельная вилка, электрокабель.

Сборка всех деталей макета выполнена при помощи клея, гвоздей, саморезов.

Отделка деталей произведена мебельным лаком в два слоя, с промежуточной шлифовкой.

Перед работой мною была разработана инструкционная карта, определяющая порядок работы над изделием.

ИНСТРУКЦИОННАЯ КАРТА

ЭКОНОМИЧЕСКИЙ РАСЧЕТ

На изготовление макета источников света было израсходовано:

Материалы:

Брус березовый-0.019 м3 по цене 4270 рублей за м3;

Ламинированного ДСП-1 м2 по цене 270 рублей м2:

Фанеры-0.86 м2 по цене 248 рублей м2 на общую сумму 565 рублей.

Отделочные материалы:

Лак 120грамм на сумму 96 рублей;

Кромка ламинированная на 65 рублей/метр;

Шлифовальная бумага на сумму 113 руб.. Итого: 274 рубля.

Электродетали мы в расчет не включаем, так как они были взяты от старого светильника.

Общее количество электроэнергии , затраченной при изготовлении макета, составило 47.6 Квт/час на сумму 176 рублей. Из них на точение 3.9 Квт/ч, выжигание 0,5 Квт/ч, освещение 43,2 Квт/ч.

Общая стоимость изделия составила 1015 рублей.

Литература

1. СЕТЬ ИНТЕРНЕТ

2. «Как солнце в дом вошло»

3. Журналы «Школа и производство»

4. «Токарные работы с древесиной»

Приложения

Свет (с латинского языка lucis) или видимый свет представляет собой часть спектра электромагнитного излучения, которое воспринимается человеческим глазом. Элементарной единицей света является фотон. Элементарные частицы обладают определенной длинной волны, зависящей от источника света, который их породил. Фотон подчиняется законам квантовой механики и в разных физических условиях может проявлять себя либо как частица, либо как волна.

Историческая эволюция приборов для освещения

Первые источники видимого электромагнитного излучения, которые использовало человечество для своих нужд, были основаны на сжигании горючего топлива растительного (дерево) или животного происхождения (сало и жир).

Древние греки и римляне впервые стали использовать глиняные и бронзовые сосуды, в которые помещали горючие вещества. Эти сосуды стали прародителями современных ламп.

В конце XVIII века швейцарский химик Аргант изобрел лампу с фитилем, в которой в качестве топлива использовался керосин. В конце XIX века Эдисон запатентовал электрическую лампу накаливания. После этого изобретения и благодаря быстрой динамике развития индустрии, начинает появляться множество других электрических источников излучения.

Физика источников света

Спектр излучения, который видит глаз человека, лежит в приделах длин волн фотонов от 400 нм до 700 нм. Источником света является физический процесс, который происходит в атоме вещества. Атом в результате какого-либо действия может получить энергию извне, часть этой энергии он передает своей электронной подсистеме.

Энергетические уровни электрона в атоме являются дискретными, то есть каждому из этих уровней соответствует конкретная величина. Благодаря полученной извне энергии некоторые электроны атома могут перейти на энергетические уровни более высокого порядка, в этом случае можно говорить о возбужденном электронном состоянии. В этом состоянии электроны оказываются неустойчивыми и снова переходят на уровни с меньшей энергией. Этот процесс сопровождается излучением фотонов, которое и является светом, который мы воспринимаем.

Термическое излучение

Процесс термического излучения представляет собой физический процесс, при котором электронная подсистема возбуждается за счет передачи ей кинетической энергии от ядер атомов. Если какой-либо объект, например металлическую пластину, подвергнуть нагреву до высоких температур, то он начнет светиться. Сначала видимый свет будет иметь красный цвет, поскольку эта часть видимого спектра является наименее энергетической. При увеличении температуры металла он станет излучать бело-желтый свет.

Отметим, что при нагреве металла он сначала начинает испускать инфракрасные лучи, которые человек не способен видеть, но ощущает их в виде тепла.

Люминесцентное излучение


Этот тип излучения возникает без предварительного нагрева тела и состоит из двух последовательных физических процессов:

  1. Поглощение электронной подсистемой энергии и переход этой подсистемы в возбужденное энергетическое состояние.
  2. Излучение в световом диапазоне, связанное с возвращением электронной подсистемы в основное энергетическое состояние.

Если оба этапа происходят во временном интервале в несколько секунд, то процесс называется флуоресценцией, например, излучение экрана телевизора после его выключения является флуоресцентным. Если же оба этапа процесса излучения происходят в течение несколько часов и дольше, то такое излучение называется фосфоресценцией, например, светящиеся часы в темной комнате.

Классификация световых источников


Все источники видимого для человеческого глаза электромагнитного излучения в зависимости от его происхождения можно разделить на две большие группы:

  1. Естественные источники. Они излучают электромагнитные волны благодаря естественным физическим и химическим процессам, например естественными источниками света являются звезды, светлячки и другие. Они могут быть объектами как живой, так и неживой природы.
  2. Искусственные источники света. Они обязаны своим происхождением человеку, так как являются его изобретением.

Искусственные приборы видимого электромагнитного излучения


В свою очередь, искусственные источники бывают следующих типов:

  • Лампы накаливания. Они излучают свет благодаря разогреву металлической нити накаливания до температуры нескольких тысяч градусов. Сама нить накаливания находится в герметичном стеклянном сосуде, который заполнен инертным газом, предотвращающим процесс окисления нити.
  • Галогеновые лампы. Представляют собой новую эволюционную ступень ламп накаливания, в которых к инертному газу, в котором находится металлическая нить накаливания, добавляется галогеновый газ, например, йод или бром. Этот газ вступает в химическое равновесие с металлом нити, которым является вольфрам, и позволяет продлить срок службы лампы. Вместо стеклянного корпуса в галогеновых лампах используют кварц, который выдерживает более высокие температуры, чем стекло.
  • Газоразрядные лампы. Этот вид источников света создает видимое электромагнитное излучение за счет электрических разрядов, которые возникают в смеси газов и паров металла.
  • Флуоресцентные лампы. Эти электрические источники света создают излучение за счет флуоресцентного покрытия внутренней стороны корпуса лампы, которое возбуждается за счет ультрафиолетового излучения электрического разряда.
  • Источники LED (от англ. Light Emitting Diode). Этот вид источников света представляет собой диодные источники электромагнитного излучения. Они отличаются простотой устройства и долгим сроком действия. Также их преимуществами перед другими электрическими источниками света является низкая потребляемая мощность и практически полное отсутствие теплового излучения.

Прямое и непрямое излучение

Прямыми источниками света являются приборы, природные тела и организмы, которые могут самостоятельно испускать электромагнитные волны в видимом спектре. К прямым источникам относятся звезды, температура которых достигает десятков и сотен тысяч градусов, огонь, лампа накаливания, а также современные приборы, например, плазменный телевизор или жидкокристаллический монитор компьютера, который производит излучение, индуцированное микро электрическим разрядом.

Другим примером прямых естественных источников света являются животные, которые обладают биолюминесценцией. Излучение в этом случае возникает как результат химических процессов, происходящих в организме существ. К ним относятся светлячки и некоторые жители морских глубин.

Непрямые источники света представляют собой тела, которые не излучают самостоятельно свет, но способны его отражать. При этом отражающая способность каждого тела зависит от его химического состава и физического состояния. Непрямые источники святятся только благодаря тому, что находятся под влиянием электромагнитного излучения прямых источников. Если непрямой источник не аккумулирует световую энергию, то при прекращении воздействия света на него он перестает быть видимым.

Примеры непрямого излучения

Традиционным примером источников света данного типа является спутник Земли - Луна. Это небесное тело отражается солнечные лучи, которые падают на нее. Благодаря процессу отражения мы можем видеть, как саму Луну, так и окружающие нас предметы ночью в лунном свете. По той же причине видны в телескоп планеты солнечной системы, а также наша планета - Земля (если смотреть на нее из космоса).

Еще одним примером объекта непрямого излучения, который отражает лучи от источника света, является сам человек. В общем, любой предмет является источником непрямого излучения за исключением черной дыры. Гравитационное поле черных дыр настолько сильно, что даже свет не может выбраться из него.

Основные характеристики приборов

Основными характеристиками источников света являются следующие:

  • Световой поток. Физическая величина, которая характеризует количество света, испускаемого источником за одну секунду во всех направлениях. Единицей измерения светового потока является люмен.
  • Интенсивность излучения. В некоторых случаях возникает необходимость в знании распределения светового потока вокруг его источника. Именно это распределение и описывает данная характеристика, которая измеряется в канделах.
  • Освещенность. Измеряется в люксах и представляет собой отношение светового потока к освещаемой им площади. Эта характеристика важна для комфортного выполнения определенных видов работ. Например, по международным нормам освещенность на кухне должна быть около 200 люкс, а для учебы уже необходимы 500 люкс.
  • Эффективность излучения. Является важной характеристикой любой электрической лампы, поскольку она описывает отношение светового потока, создаваемого данным прибором, к потребляемой им мощности. Чем больше это отношение, тем более экономичной считается лампа.
  • Индекс цветопередачи. Указывает на то, насколько точно лампа воспроизводит цвета. Для ламп хорошего качества этот индекс лежит в области 100.
  • Цветовая температура. Представляет собой меру "белизны" света. Так, свет с преобладающими красно-желтыми цветами считается теплым и имеет цветовую температуру меньше 3000 К, холодный свет имеет синие цвета и характеризуется цветовой температурой выше 6000 К.

Применение искусственных источников видимого излучения

Каждый искусственный источник электромагнитного излучения определенного типа используется человеком в той или иной сфере деятельности. Области применения источников света следующие:

  • Лампы накаливания продолжают оставаться основными источниками освещения помещений благодаря их низкой цене и хорошему индексу цветопередачи. Однако эти лампы постепенно вытесняются галогеновыми.
  • Галогеновые лампы задумывались как электроприборы, которые должны были повысить эффективность ламп накаливания, заменив их. В настоящее время они нашли свое применение в автомобилях.
  • Флуоресцентные источники света применяются главным образом для освещения офисов и других служебных помещений благодаря своему разнообразию форм и излучению рассеянного и равномерного света. Эффективность излучения такого типа ламп повышается с увеличением их длины и диаметра.

Важность естественного света для здоровья человека

Для всех организмов, которые обитают на планете Земля, вращение нашей планеты и периодичность дня и ночи являются важными процессами для нормальной жизнедеятельности и протекания биологического цикла. Более того, чтобы быть здоровыми, большинство живых существ нуждаются в прямом солнечном излучении.


Если говорить о человеке, то недостаток солнечного света приводит к развитию депрессии, а также к недостатку витамина D, поскольку полученный человеком загар позволяет организму усваивать этот витамин с большей легкостью.

Результаты одного исследования продемонстрировали, что достаточное нахождение человека под прямыми солнечными лучами позволяет снизить и облегчить некоторые симптомы определенных заболеваний. В частности, связанные с депрессией проблемы полностью или частично исчезали у 20% пациентов. Естественно, что один лишь солнечный свет не является лекарством против депрессии, однако он является неотъемлемой частью комплексного лечения.

Современный мир светится яркими красками даже с космоса: космические станции и экипаж на борту могут лицезреть удивительную картину ночью: светящаяся паутина из ярких городских огней. Это – продукт жизнедеятельности человека, его тяжелой умственной изобретательской работы. Нам это сложно представить, но еще каких-нибудь 300 лет назад для освещения улиц и домов люди использовали совершенно невообразимые вещи. Вот об этом я и хочу вам рассказать, об удивительной и интересной истории освещения, начиная от самых примитивных способов и заканчивая современными люстрами, бра, подвесными светильниками и другими приборами, благодаря которым наши дома и квартиры такие уютные.

Древний мир полон загадок и увлекательных уроков, несмотря на то, что у большинства современных людей интерес к нему постепенно отпадает. Что касается освещения, то здесь тоже есть кое-что интересное, ведь первобытные люди не использовали даже обычный огонь. Сначала люди лишь умели его поддерживать: где-нибудь ударит молния, загорится дерево и там может осесть несколько людей, которые будут прилагать усилия для того, чтобы пламя не угасло. Огонь встречается в природе довольно редко, поэтому племена, которым удалось наткнуться на пожар в первобытном лесу – практически везунчики. К сожалению, не установлен точный период, когда люди научились вручную добывать огонь, но большинство ученых сходится во мнении, что это произошло около 10 млн лет назад.

С этого момента, по сути, началась эволюция мысли, так как благодаря огню у человека стало намного больше свободного времени, и жизнь стала комфортней, так как пламя огня даровало тепло у ночного кострища под сенью звезд. Так, возможно, родилась сама философия! Но не будем отклоняться от темы, вернемся к искусственному освещению.

Энергия, рожденная идеей

Как известно, во время реакции горения высвобождается тепловая энергия, и во время этой реакции также выделяются фотоны – частицы света. Экспериментальным путем (так как адекватной теоретической базы еще не было) люди постепенно находили материалы, которые могут долго гореть, высвобождая свет и тепло. Это различные масла, смолистые порода дерева, природные смолы, воск, ворвань (китовый жир) и даже нефть! К слову, греческий огонь, известный в своё время как чрезвычайно грозное оружие, по некоторым версиям представлял собой именно нефть.

Все эти горючие материалы использовались людьми для освещения своих жилищ и улиц – создавались специальные люстры (несколько сосудов, скрепленных в одну систему), бра или крепились к стенке факелы, чтобы осветить комнату. К сожалению, такой способ освещения не является безопасным, и истории известно множество случаев возникновения пожаров, когда кто-то случайно перевернет лампаду или уронит факел на стог сена. Помимо этого, люди рубили много деревьев и охотились на китов, а изобретение электричества в 19 веке всё изменило – китам жить стало немного спокойней (а вот вырубка леса даже ускорилась, но уже по другим причинам).

«Да будет свет», сказал Петров и соединил угольные стержни

В 1802 году русский ученый Петров, являвшийся также профессором физики, проводил в своей лаборатории опыты с помощью построенной им батареи гальванических элементов. Ему удалось соединить два угольных стержня с помощью разных разрядов (положительный и отрицательный). Сблизившись, угли начали разогреваться до температуры, когда начали светиться. После этого он их раздвинул и увидел уникальное явление – яркое изогнутое пламя. Это была первая в мире электрическая дуга. Далее произошел бум, и огромное количество ученых начало заниматься исследованиями в этой области. Так родилась лампа русского ученого Яблочкова, Лодыгина и, наконец, Томаса Эдисона, которого ошибочно считают первым в мире человеком, что изобрел электрическую лампочку. Электрический свет – продукт кропотливой работы множества ученых, среди которых видное место занимает также и сам Эдисон, значительно усовершенствовавший механизм работы лампы накаливания и сумевший существенно продлить её сроки службы.

Современный мир: великие достижения в области освещения

Ассортимент осветительных приборов сегодняшнего дня просто поражает. Это и лампы дневного света, и различные энергосберегающие, а также светодиодные, галогенные, металогалогенные, натриевые и другие виды лампочек. Говорить об изобретении каждой лампочки можно очень долго, но это ни к чему. Современный пользователь без труда может купить светильник с таким типом света, который именно ему будет комфортно наблюдать. Для этого не нужно знать технических деталей, достаточно лишь узнать о преимуществах тех или иных осветительных приборов. Широкое разнообразие осветительных приборов и лампочек открывает огромные возможности в плане декорирования и освещения помещений. Достаточно лишь знать, куда обращаться. вы можете купить качественные осветительные приборы и другое профильное оборудование, причем на самых выгодных условиях. Магазин «Homelight» является официальным представителем компании Philips в Украине, поэтому вы можете приобрести качественную европейскую продукцию на максимально комфортных и выгодных условиях.

Со времен изобретения первой угольной лампы накаливания прошло около 180 лет. Революция в мире освещения того времени уже давно осталась позади и мало кто задумывается, как все начиналось. Со временем технологии менялись: лампу с угольной спиралью сменила лампа накаливания с платиновой спиралью, затем лампа с обугленной бамбуковой нитью в вакуумированном сосуде и великое множество других модификаций ламп. Каких только материалов не было испробовано для создания более эффективной лампы накаливания, однако это не принесло существенных результатов. В современных лампах накаливания используется спираль из вольфрама, но и этот редкий материал позволяет добиться, что всего 5% энергии преобразуется в свет. Глобальный переворот пришелся лишь на эпоху энергосберегающих и светодиодных ламп. Основанные на совершенно ином принципе свечения, данные лампы позволили человечеству в разы улучшить качество освещения и сократить на него расходы.

Давайте же попробуем отследить всю историю источников света и существующие в наше время типы ламп.

В наши дни все лампы можно поделить на три основные группы: накаливания, газоразрядные и светодиодные. Люди «старой закалки» наотрез отвергают последние два вида, что напрасно. Но пойдем по порядку.

Лампы накаливания

Лампа накаливания представляет собой электрический источник света, светящимся телом которого служит проводник, нагреваемый протеканием электрического тока до высокой температуры. Все лампы накаливания можно разделить на пять видов:

К преимуществам ламп накаливания можно отнести их низкую стоимость, небольшие размеры, мгновенность включения, отсутствие токсичных компонентов, работа при низкой температуре окружающей среды. Но их недостатки, все же, не сопоставимы с современными требованиями к источникам света. К ним относятся: низкая эффективность (КПД не более 5%), короткий срок службы, резкая зависимость световой отдачи и срока службы от напряжения, цветовая температура в пределах от 2300 до 2900 К, высокая пожароопасность.

Лампы накаливания постепенно остаются в прошлом, но отдадим должное истории, проложившей тропу от истоков к современным источникам освещения:



1838-1854 гг. — первые лампы, работающие от электрического тока. Изобретатели: бельгиец Жобар, англичанин Деларю, немец Генрих Гебель.

11 июля 1874 года российский инженер Александр Николаевич Лодыгин получил патент на нитевую лампу. В качестве нити накала он использовал угольный стержень, помещённый в вакуумированный сосуд.

В 1876 году российский изобретатель и предприниматель Павел Николаевич Яблочков разработал электрическую свечу и получил на неё французский патент. Свеча Яблочкова оказалась проще, удобнее и дешевле в эксплуатации, чем угольная лампа Лодыгина. Изобретение Яблочкова можно отнести также к разрядным лампам.


В 1879 году американский изобретатель Томас Эдисон патентует лампу с платиновой нитью. В 1880 году он возвращается к угольному волокну и создаёт лампу с временем жизни 40 часов. Одновременно Эдисон изобрёл патрон, цоколь и выключатель. Несмотря на столь непродолжительное время жизни его лампы вытесняют использовавшееся до тех пор газовое освещение.


В 1904 году венгры Д-р Шандор Юст и Франьо Ханаман получили патент на использование в лампах вольфрамовой нити. В Венгрии же были произведены первые такие лампы, вышедшие на рынок через венгерскую фирму Tungsram в 1905 году.

В 1906 году Лодыгин продаёт патент на вольфрамовую нить компании General Electric. Из-за высокой стоимости вольфрама патент находит только ограниченное применение.

В 1910 году Вильям Дэвид Кулидж изобретает улучшенный метод производства вольфрамовой нити. Впоследствии вольфрамовая нить вытесняет все другие виды нитей.

Остающаяся проблема с быстрым испарением нити в вакууме была решена американским учёным Ирвингом Ленгмюром, который, работая с 1909 года в фирме General Electric, придумал наполнять колбы ламп инертным газом, что существенно увеличило время жизни ламп.


Газоразрядные лампы

Опыты по созданию свечения в заполненных газом трубках начались в 1856 году. Свечение большей частью было в невидимом диапазоне спектра. И лишь в 1926 году Эдмунд Джермер предложил увеличить операционное давление в пределах колбы и покрывать колбы флуоресцентным порошком, который преобразовывает ультрафиолетовый свет, испускаемый возбуждённой плазмой, в однородный белый свет. В результате, началась эпоха газоразрядных ламп.

В настоящее время Э.Джермер признан как изобретатель лампы дневного света. General Electric позже купила патент Джермера, и к 1938 году довела лампы дневного света до широкого коммерческого использования.

1927-1933 гг. - венгерский физик Дэнис Габор, работая в компании Siemens&Halske AG (сегодня компания Siemens), разработал ртутную лампу высокого давления, которая сегодня повсеместно используется в уличном освещении.

Серьезный вклад в совершенствование флуоресцентного порошка, позже названного люминофором, сделал в 30-х годах прошлого века советский физик Сергей Иванович Вавилов.

1961 год - создание первых натриевых ламп высокого давления. В конце 70-х годов прошлого века компания General Electric первой выпустила на рынок натриевые лампы, а немного позже и металлогалогенные.

В начале 80-х годов появились первые компактные люминесцентные лампы (КЛЛ).

В 1985 году компания OSRAM первой представила лампу со встроенным электронным ПРА.

Все многообразие газоразрядных ламп можно представить следующей схемой:

Самые популярные из этой группы, пожалуй, компактные люминесцентные лампы. Они позволяют экономить электроэнергию до 5 раз по сравнению с лампами накаливания, при этом срок их службы составляет около 8 лет. Корпус данной лампы нагревается в незначительной степени, что позволяет использовать их повсеместно. Кроме того, люминесцентные лампы могут иметь различные цветовые температуры и различные варианты внешнего вида.

Но, к сожалению, КЛЛ обладают несколькими недостатками, к которым относятся:

  • Значительное снижение срока службы при работе в сетях с перепадами напряжения, а также при частых включениях и выключениях.
  • Спектр такой лампы - линейчатый. Это приводит не только к неправильной цветопередаче, но и к повышенной усталости глаз.
  • Компактные люминесцентные лампы содержат 3-5 мг ртути.
  • Использование выключателей с подсветкой приводит к периодическому, раз в несколько секунд, кратковременному зажиганию ламп (в качественных лампах невидимому для глаз), что приводит к скорому выходу из строя лампы.
  • Обычные компактные люминесцентные лампы несовместимы с диммерами. Стоимость диммируемых ламп примерно в 2 раза выше.

По этим причинам вопрос о новых технологиях при изготовлении источников света оставался открытым. В свет широко шагнули светодиодные лампы.

Светодиодные лампы

Светодиодные источники света основаны на эффекте свечения полупроводников (диодов) при пропускании через них электрического тока. Малые размеры, экономичность и долговечность позволяют изготавливать на основе светодиодов любые световые приборы. В наши дни светодиоды занимают значительную долю рынка источников света и используются повсеместно.

Первое сообщение об излучении света твёрдотельным диодом было сделано в 1907 году британским экспериментатором Генри Раундом из Marconi Company. Примечательно, что эта компания впоследствии стала частью General Electric и существует по сей день.

В 1923 году Олег Владимирович Лосев в Нижегородской радиолаборатории показал, что свечение диода возникает вблизи p-n-перехода. Полученные им два авторских свидетельства на «Световое реле» (первое заявлено в феврале 1927 г.) формально закрепили за Россией приоритет в области светодиодов, утраченный в 1960-гг. в пользу США после изобретения современных светодиодов, пригодных к практическому применению.

В 1961 году Роберт Байард и Гари Питтман из компании Texas Instruments открыли и запатентовали технологию инфракрасного светодиода.

В 1962 году Ник Холоньяк в компании General Electric разработал первый в мире практически применимый светодиод, работающий в световом (красном) диапазоне.

В 1972 году Джордж Крафорд (студент Ника Холоньяка), изобрёл первый в мире жёлтый светодиод и улучшил яркость красных и красно-оранжевых светодиодов в 10 раз.

В 1976 году Т. Пирсол создал первый в мире высокоэффективный светодиод высокой яркости для телекоммуникационных применений, изобретя полупроводниковые материалы, специально адаптированные к передачам через оптические волокна.

Светодиоды оставались чрезвычайно дорогими вплоть до 1968 года (около $200 за штуку). Компания Monsanto была первой, организовавшей массовое производство светодиодов, работающих в диапазоне видимого света и применимых в индикаторах.

Компании Hewlett-Packard удалось использовать светодиоды в своих ранних массовых карманных калькуляторах.

К преимуществам светодиодных ламп можно отнести:


Основные недостатки светодиодов в первую очередь связаны с их высокой стоимостью. Так, например, отношение цена/люмен у сверхъярких светодиодов в 50-100 раз больше, чем у обычной лампы накаливания. Помимо этого можно выделить еще два момента:

  • Светодиоду необходим постоянный номинальный рабочий ток. Из-за этого появляются дополнительные электронные узлы, повышающие себестоимость системы освещения в целом.
  • Относительно низкая предельная температура: мощные осветительные светодиоды требуют внешнего радиатора для охлаждения, потому что имеют конструкционно неблагоприятное соотношение своих размеров к выделяемой тепловой мощности (они слишком маленькие) и не могут рассеять столько тепла, сколько выделяют (несмотря даже на более высокий КПД, чем у ламп прочих видов).

На сегодняшний день специалисты сходятся во мнении, что за светодиодами ближайшее будущее в освещении. Более эффективной и практичной технологии в настоящее время не существует.

Учитывая возрастающую потребность человечества в искусственном освещении можно предположить, что появятся и новые, более эффективные технологии. Но придут они уже на замену светодиодов, которые в ближайшие годы станут такой же обыденностью как когда лампы-то накаливания.

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Фрисолак описание и состав Фрисолак описание и состав Коричневые кожаные сапоги Коричневые кожаные сапоги Как завязывать шарф на пальто: разные виды узлов Как завязать круговой шарф на пальто Как завязывать шарф на пальто: разные виды узлов Как завязать круговой шарф на пальто