Что такое внутренняя энергия. Внутренняя энергия тела

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Согласно MKT все вещества состоят из частиц, которые находятся в непрерывном тепловом движении и взаимодействуют друг с другом. Поэтому, даже если тело неподвижно и имеет нулевую потенциальную энергию, оно обладает энергией (внутренней энергией), представляющей собой суммарную энергию движения и взаимодействия микрочастиц, составляющих тело. В состав внутренней энергии входят:

  1. кинетическая энергия поступательного, вращательного и колебательного движения молекул;
  2. потенциальная энергия взаимодействия атомов и молекул;
  3. внутриатомная и внутриядерная энергии.

В термодинамике рассматриваются процессы при температурах, при которых не возбуждается колебательное движение атомов в молекулах, т.е. при температурах, не превышающих 1000 К. В этих процессах изменяются только первые две составляющие внутренней энергии. Поэтому

под внутренней энергией в термодинамике понимают сумму кинетической энергии всех молекул и атомов тела и потенциальной энергии их взаимодействия.

Внутренняя энергия тела определяет его тепловое состояние и изменяется при переходе из одного состояния в другое. В данном состоянии тело обладает вполне определенной внутренней энергией, не зависящей от того, в результате какого процесса оно перешло в данное состояние. Поэтому внутреннюю энергию очень часто называют функцией состояния тела .

\(~U = \dfrac {i}{2} \cdot \dfrac {m}{M} \cdot R \cdot T,\)

где i - степень свободы. Для одноатомного газа (например, инертные газы) i = 3, для двухатомного - i = 5.

Из этих формул видно, что внутренняя энергия идеального газа зависит только от температуры и числа молекул и не зависит ни от объема, ни от давления. Поэтому изменение внутренней энергии идеального газа определяется только изменением его температуры и не зависит от характера процесса, в котором газ переходит из одного состояния в другое:

\(~\Delta U = U_2 - U_1 = \dfrac {i}{2} \cdot \dfrac{m}{M} \cdot R \cdot \Delta T ,\)

где ΔT = T 2 - T 1 .

  • Молекулы реальных газов взаимодействуют между собой и поэтому обладают потенциальной энергией W p , которая зависит от расстояния между молекулами и, следовательно, от занимаемого газом объема. Таким образом, внутренняя энергия реального газа зависит от его температуры, объема и структуры молекул.

*Вывод формулы

Средняя кинетическая энергия молекулы \(~\left\langle W_k \right\rangle = \dfrac {i}{2} \cdot k \cdot T\).

Число молекул в газе \(~N = \dfrac {m}{M} \cdot N_A\).

Следовательно, внутренняя энергия идеального газа

\(~U = N \cdot \left\langle W_k \right\rangle = \dfrac {m}{M} \cdot N_A \cdot \dfrac {i}{2} \cdot k \cdot T .\)

Учитывая, что k⋅N A = R - универсальная газовая постоянная, имеем

\(~U = \dfrac {i}{2} \cdot \dfrac {m}{M} \cdot R \cdot T\) - внутренняя энергия идеального газа.

Изменение внутренней энергии

Для решения практических вопросов существенную роль играет не сама внутренняя энергия, а ее изменение ΔU = U 2 - U 1 . Изменение же внутренней энергии рассчитывают, исходя из законов сохранения энергии.

Внутренняя энергия тела может изменяться двумя способами:

  1. При совершении механической работы . а) Если внешняя сила вызывает деформацию тела, то при этом изменяются расстояния между частицами, из которых оно состоит, а следовательно, изменяется потенциальная энергия взаимодействия частиц. При неупругих деформациях, кроме того, изменяется температура тела, т.е. изменяется кинетическая энергия теплового движения частиц. Но при деформации тела совершается работа, которая и является мерой изменения внутренней энергии тела. б) Внутренняя энергия тела изменяется также при его неупругом соударении с другим телом. Как мы видели раньше, при неупругом соударении тел их кинетическая энергия уменьшается, она превращается во внутреннюю (например, если ударить несколько раз молотком по проволоке, лежащей на наковальне, - проволока нагреется). Мерой изменения кинетической энергии тела является, согласно теореме о кинетической энергии, работа действующих сил. Эта работа может служить и мерой изменения внутренней энергии. в) Изменение внутренней энергии тела происходит под действием силы трения, поскольку, как известно из опыта, трение всегда сопровождается изменением температуры трущихся тел. Работа силы трения может служить мерой изменения внутренней энергии.
  2. При помощи теплообмена . Например, если тело поместить в пламя горелки, его температура изменится, следовательно, изменится и его внутренняя энергия. Однако никакая работа здесь не совершалась, ибо не происходило видимого перемещения ни самого тела, ни его частей.

Изменение внутренней энергии системы без совершения работы называется теплообменом (теплопередачей).

Существует три вида теплообмена: теплопроводность, конвекция и излучение.

а) Теплопроводностью называется процесс теплообмена между телами (или частями тела) при их непосредственном контакте, обусловленный тепловым хаотическим движением частиц тела. Амплитуда колебаний молекул твердого тела тем больше, чем выше его температура. Теплопроводность газов обусловлена обменом энергией между молекулами газа при их столкновениях. В случае жидкостей работают оба механизма. Теплопроводность вещества максимальна в твердом и минимальна в газообразном состоянии.

б) Конвекция представляет собой теплопередачу нагретыми потоками жидкости или газа от одних участков занимаемого ими объема в другие.

в) Теплообмен при излучении осуществляется на расстоянии посредством электромагнитных волн.

Рассмотрим более подробно способы изменения внутренней энергии.

Механическая работа

При рассмотрении термодинамических процессов механическое перемещение макротел в целом не рассматривается. Понятие работы здесь связывается с изменением объема тела, т.е. перемещением частей макротела друг относительно друга. Процесс этот приводит к изменению расстояния между частицами, а также часто к изменению скоростей их движения, следовательно, к изменению внутренней энергии тела.

Изобарный процесс

Рассмотрим вначале изобарный процесс. Пусть в цилиндре с подвижным поршнем находится газ при температуре T 1 (рис. 1).

Будем медленно нагревать газ до температуры T 2 . Газ будет изобарически расширяться, и поршень переместится из положения 1 в положение 2 на расстояние Δl . Сила давления газа при этом совершит работу над внешними телами. Так как p = const, то и сила давления F = p⋅S тоже постоянная. Поэтому работу этой силы можно рассчитать по формуле

\(~A = F \cdot \Delta l = p \cdot S \cdot \Delta l = p \cdot \Delta V,\)

где ΔV - изменение объема газа.

  • Если объем газа не изменяется (изохорный процесс), то работа газа равна нулю.
  • Газ выполняет работу только в процессе изменения своего объема.

При расширении (ΔV > 0) газа совершается положительная работа (А > 0); при сжатии (ΔV < 0) газа совершается отрицательная работа (А < 0).

  • Если рассматривать работу внешних сил A " (А " = –А ), то при расширении (ΔV > 0) газа А " < 0); при сжатии (ΔV < 0) А " > 0.

Запишем уравнение Клапейрона-Менделеева для двух состояний газа:

\(~p \cdot V_1 = \nu \cdot R \cdot T_1, \; \; p \cdot V_2 = \nu \cdot R \cdot T_2,\)

\(~p \cdot (V_2 - V_1) = \nu \cdot R \cdot (T_2 - T_1) .\)

Следовательно, при изобарном процессе

\(~A = \nu \cdot R \cdot \Delta T .\)

Если ν = 1 моль, то при ΔΤ = 1 К получим, что R численно равна A .

Отсюда вытекает физический смысл универсальной газовой постоянной : она численно равна работе, совершаемой 1 моль идеального газа при его изобарном нагревании на 1 К.

Не изобарный процесс

На графике p (V ) при изобарном процессе работа равна площади заштрихованного на рисунке 2, а прямоугольника.

Если процесс не изобарный (рис. 2, б), то кривую функции p = f (V ) можно представить как ломаную, состоящую из большого количества изохор и изобар. Работа на изохорных участках равна нулю, а суммарная работа на всех изобарных участках будет равна

\(~A = \lim_{\Delta V \to 0} \sum^n_{i=1} p_i \cdot \Delta V_i\), или \(~A = \int p(V) \cdot dV,\)

т.е. будет равна площади заштрихованной фигуры .

При изотермическом процессе (Т = const) работа равна площади заштрихованной фигуры, изображенной на рисунке 2, в.

Определить работу, используя последнюю формулу, можно только в том случае, если известно, как изменяется давление газа при изменении его объема, т.е. известен вид функции p = f (V ).

Таким образом, видно, что даже при одном и том же изменении объема газа работа будет зависеть от способа перехода (т.е. от процесса: изотермический, изобарный …) из начального состояния газа в конечное. Следовательно, можно сделать вывод, что

  • Работа в термодинамике является функцией процесса и не является функцией состояния.

Количество теплоты

Как известно, при различных механических процессах происходит изменение механической энергии W . Мерой изменения механической энергии является работа сил, приложенных к системе:

\(~\Delta W = A.\)

При теплообмене происходит изменение внутренней энергии тела. Мерой изменения внутренней энергии при теплообмене является количество теплоты.

Количество теплоты - это мера изменения внутренней энергии в процессе теплообмена.

Таким образом, и работа, и количество теплоты характеризуют изменение энергии, но не тождественны внутренней энергии. Они не характеризуют само состояние системы (как это делает внутренняя энергия), а определяют процесс перехода энергии из одного вида в другой (от одного тела к другому) при изменении состояния и существенно зависят от характера процесса.

Основное различие между работой и количеством теплоты состоит в том, что

  • работа характеризует процесс изменения внутренней энергии системы, сопровождающийся превращением энергии из одного вида в другой (из механической во внутреннюю);
  • количество теплоты характеризует процесс передачи внутренней энергии от одних тел к другим (от более нагретых к менее нагретым), не сопровождающийся превращениями энергии.

Нагревание (охлаждение)

Опыт показывает, что количество теплоты, необходимое для нагревания тела массой m от температуры T 1 до температуры T 2 , рассчитывается по формуле

\(~Q = c \cdot m \cdot (T_2 - T_1) = c \cdot m \cdot \Delta T,\)

где c - удельная теплоемкость вещества (табличная величина);

\(~c = \dfrac{Q}{m \cdot \Delta T}.\)

Единицей удельной теплоемкости в СИ является джоуль на килограмм-Кельвин (Дж/(кг·К)).

Удельная теплоемкость c численно равна количеству теплоты, которое необходимо сообщить телу массой 1 кг, чтобы нагреть его на 1 К.

Кроме удельной теплоемкости рассматривают и такую величину, как теплоемкость тела.

Теплоемкость тела C численно равна количеству теплоты, необходимому для изменения температуры тела на 1 К:

\(~C = \dfrac{Q}{\Delta T} = c \cdot m.\)

Единицей теплоемкости тела в СИ является джоуль на Кельвин (Дж/К).

Парообразование (конденсация)

Для превращения жидкости в пар при неизменной температуре необходимо затратить количество теплоты

\(~Q = L \cdot m,\)

где L - удельная теплота парообразования (табличная величина). При конденсации пара выделяется такое же количество теплоты.

Единицей удельной теплоты парообразования в СИ является джоуль на килограмм (Дж/кг).

Плавление (кристаллизация)

Для того чтобы расплавить кристаллическое тело массой m при температуре плавления, необходимо телу сообщить количество теплоты

\(~Q = \lambda \cdot m,\)

где λ - удельная теплота плавления (табличная величина). При кристаллизации тела такое же количество теплоты выделяется.

Единицей удельной теплоты плавления в СИ является джоуль на килограмм (Дж/кг).

Сгорание топлива

Количество теплоты, которое выделяется при полном сгорании топлива массой m ,

\(~Q = q \cdot m,\)

где q - удельная теплота сгорания (табличная величина).

Единицей удельной теплоты сгорания в СИ является джоуль на килограмм (Дж/кг).

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 129-133, 152-161.

Любое тело или предмет обладают энергией. Например, летящий самолет или падающий шар обладают механической энергией. В зависимости от взаимодействия с внешними телами различают два вида механической энергии: кинетическая и потенциальная. Кинетической энергией обладают все предметы, которые тем или иным способом движутся в пространстве. Это самолет, птица, летящий в ворота мяч, перемещающийся автомобиль и др. Вторым видом механической энергии является потенциальная. Этой энергией обладают, например, поднятый камень или мяч над поверхностью земли, сжатая пружина и т.п. При этом кинетическая энергия тела может переходить в потенциальную и наоборот.

Самолеты, вертолет и дирижабль обладают кинетической энергией


Сжатая пружина обладает потенциальной энергией

Рассмотрим пример. Тренер поднимает мяч и держит его в руках. При этом мяч обладает потенциальной энергией. Когда тренер бросает мяч на землю, то у него появляется кинетическая энергия, пока он летит. После того, как мяч отскакивает, также происходит перетекание энергии до тех пор, пока мяч не будет лежать на поле. В этом случае и кинетическая и потенциальная энергии равны нулю. Но у мяча при этом повысилась внутренняя энергия молекул из-за взаимодействия с полем.

Но существует еще внутренняя энергия молекул тела, например, того же мяча. Пока мы его перемещаем или поднимаем, внутренняя энергия не изменяется. Внутренняя энергия не зависит от механического воздействия или движения, а зависит только от температуры, агрегатного состояния и других особенностей.

В каждом теле имеется множество молекул, они могут обладать как кинетической энергией движения, так и потенциальной энергией взаимодействия. При этом внутренняя энергия является суммой энергий всех молекул тела.

Как изменить внутреннюю энергию тела

Внутренняя энергия зависит от скорости движения молекул в теле. Чем быстрее они движутся, тем выше энергия тела. Обычно это происходит при нагревании тела. Если же мы его охлаждаем, то происходит обратный процесс - внутренняя энергия уменьшается.

Если мы нагреваем кастрюлю при помощи огня (плиты), то мы совершаем над этим предметом работу и, соответственно, изменяем его внутреннюю энергию.

Внутреннюю энергию можно изменить двумя основными способами. Совершая работу над телом, мы увеличиваем его внутреннюю энергию и наоборот, если тело совершает работу, то его внутренняя энергия уменьшается. Вторым способом изменения внутренней энергии является процесс теплопередачи. Обратите внимание, что во втором варианте над телом не совершается работы. Так, например, нагревается стул зимой, стоящий рядом возле горячей батареи. Теплопередача всегда происходит от тел с более высокой температурой к телам с меньшей температурой.

Таким образом, зимой нагревается воздух от батарей. Проведем небольшой эксперимент, который можно выполнить в домашних условиях. Наберите стакан горячей воды и поставьте его в чашу или контейнер с холодной. Через время температура воды в обоих сосудах станет одинаковой. Это и является процессом теплопередачи, то есть изменения внутренней энергии без совершения работы. Существует три способа теплопередачи:

Внутренняя энергия тела не может являться постоянной величиной. Она может изменяться у любого тела. Если повысить температуру тела, то его внутренняя энергия увеличится, т.к. увеличится средняя скорость движения молекул. Таким образом, увеличивается кинетическая энергия молекул тела. И, наоборот, при понижении температуры, внутренняя энергия тела уменьшается.

Можно сделать вывод: внутренняя энергия тела изменяется, если меняется скорость движения молекул. Попытаемся определить, каким методом можно увеличить или уменьшить скорость передвижения молекул. Рассмотрим следующий опыт. Закрепим на подставке латунную трубку с тонкими стенками. Наполним трубку эфиром и закроем его пробкой. Затем обвяжем его веревкой и начнем интенсивно двигать веревкой в разные стороны. Спустя определенное время, эфир закипит, и сила пара вытолкнет пробку. Опыт демонстрирует, что внутренняя энергия вещества (эфира) возросла: ведь он изменил свою температуру, при этом закипев.

Увеличение внутренней энергии произошло за счет совершения работы при натирании трубкой веревкой.

Как мы знаем, нагревание тел может происходить и при ударах, сгибании или разгибании, говоря проще, при деформации. Во всех приведенных примерах, внутренняя энергия тела возрастает.

Таким образом, внутреннюю энергию тела можно увеличить, совершая над телом работу.

Если же работу выполняет само тело, его внутренняя энергия уменьшается.

Рассмотрим еще один опыт.

В стеклянный сосуд, у которого толстые стенки и он закрыт пробкой, накачаем воздух через специально проделанное отверстие в ней.

Спустя некоторое время пробка вылетит из сосуда. В тот момент, когда пробка вылетает из сосуда, мы сможем увидеть образование тумана. Следовательно, его образование обозначает, что воздух в сосуде стал холодным. Сжатый воздух, который находится в сосуде, при выталкивании пробки наружу совершает определенную работу. Данную работу он выполняет за счет своей внутренней энергии, которая при этом сокращается. Делать выводы об уменьшении внутренней энергии можно исходя из охлаждения воздуха в сосуде. Таким образом, внутреннюю энергию тела можно изменять путем совершения определенной работы.

Однако, внутреннюю энергию возможно изменить и иным способом, без совершения работы. Рассмотрим пример, вода в чайнике, который стоит на плите закипает. Воздух, а также другие предметы в помещении нагреваются от радиатора центрального направления. В подобных случаях, внутренняя энергия увеличивается, т.к. увеличивается температура тел. Но работа при этом не совершается. Значит, делаем вывод, изменение внутренней энергии может произойти не из-за совершения определенной работы.

Рассмотрим еще один пример.

В стакан с водой опустим металлическую спицу. Кинетическая энергия молекул горячей воды, больше кинетической энергии частиц холодного металла. Молекулы горячей воды будут передавать часть своей кинетической энергии частицам холодного металла. Таким образом, энергия молекул воды будет определенным образом уменьшаться, тем временем как энергия частиц металла будет повышаться. Температуры воды понизится, а температуры спицы не спеша, будет увеличиваться. В дальнейшем, разница между температурой спицы и воды исчезнет. За счет этого опыта мы увидели изменение внутренней энергии различных тел. Делаем вывод: внутренняя энергия различных тел изменяется за счет теплопередачи.

Процесс преобразования внутренней энергии без совершения определенной работы над телом или самим телом называется теплопередачей.

Остались вопросы? Не знаете, как сделать домашнее задание?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Внутренняя энергия - это энергия движения и взаимодействия молекул .

Кинетическая энергия всех молекул, из которых состоит тело, и потенциальная энергия их взаимодействия составляют внутреннюю энергию тела.

При остановке тела механическое движение прекращается, но зато усиливается беспорядочное (тепловое) движение его молекул. Механическая энергия превращается во внутреннюю энергию тела

Внутренняя энергия зависит от температуры тела, агрегатного состояния вещества и других факторов.

Внутренняя энергия тела не зависит ни от механического движения тела, ни от положения этого тела относительно других тел.

Если рассматривать кинетическую и потенциальную энергию одной молекулы, то это очень маленькая величина, ведь масса молекулы мала. Поскольку в теле содержится множество молекул, то внутренняя энергия тела, равная сумме энергий всех молекул, будет велика.

Способы изменения внутренней энергии

При повышении температуры внутренняя энергия тела увеличивается, так как увеличивается средняя скорость движения молекул этого тела. С понижением температуры, наоборот, внутренняя энергия тела уменьшается.

Опыт: если нагреть бутылку с резиновой пробкой, то пробка через некоторое время вылетит.

Таким образом, внутренняя энергия тела меняется при изменении скорости движения молекул.

Внутреннюю энергию можно изменить двумя способами:

1) совершая механическую работу. Внутренняя энергия увеличивается, если над телом совершают работу, а уменьшается, если тело совершает работу.

2) путем теплопередачи (теплопроводностью, конвекцией, излучением). Если тело отдаёт тепло, то внутренняя энергия уменьшается, а если принимает тепло, то она увеличивается.

Виды теплопередачи. Опыты, иллюстрирующие виды теплопередачи. Теплопередача в природе, технике, механике.

Теплообмен (теплопередача) - это процесс изменения внутренней энергии, происходящий без совершения работы.

1)

Теплопроводность - вид теплопередачи, при котором энергия передается от одного тела к другому при соприкосновении или от одной его части к другой. Разные вещества имеют разную теплопроводность. Теплопроводность у металлов большая, у жидкостей - меньше, у газов - низкая. При теплопроводности не происходит переноса вещества.

2) Конвекция - вид теплопередачи, при котором энергия переносится струями газа и жидкости. Существует два вида конвекции: естественная и вынужденная. В твердых телах конвекции нет, так как их частицы не обладают большой подвижностью. Много проявлений конвекции можно обнаружить в природе и жизни человека. Конвекция также находит применение в технике.


3) Излучение - вид теплопередачи, при котором энергия переносится электромагнитными волнами. Тела с темной поверхностью лучше поглощают и излучают энергию, чем тела, имеющие светлую поверхность. Это используется на практике.

* При теплообмене кол-во отданной теплоты равно по модулю кол-ву полученной теплоты, или их сумма равно нулю. Это называется уровнем теплового баланса.

Cтраница 1


Внутренняя энергия вещества является энергией составляющих вещество молекул. В обычных термодинамических процессах изменения претерпевают лишь кинетическая и потенциальная части внутренней энергии. Первая зависит от скоростей движения молекул (поступательного, вращательного, колебательного), вторая обусловливается наличием сил взаимодействия (притяжения или отталкивания) между молекулами и расстоянием между ними.  

Внутренняя энергия вещества представляет собой его полную энергию, которая складывается из кинетической и потенциальной энергий, составляющих вещество атомов и молекул, а также элементарных частиц, образующих атомы и молекулы.  

Внутренняя энергия вещества зависит только от его физического состояния и не зависит от способа или пути, которыми данное вещество приведено в данное состояние. Это следует непосредственно из закона сохранения энергии. В самом деле, обозначим цифрами 1 и 2 два произвольных состояния системы. Пусть V есть затраченная на этот переход энергия. Заставим теперь систему совершить первый переход в прямом - направлении, второй - в обратном. При первом переходе будет затрачена энергия [ /, при втором отдана U, следовательно, внешние тела, окружающие систему, получают энергию U - V, причем никаких изменений в самой системе не происходит. U положительна или отрицательна, безразлично; во всяком случае наше рассуждение привело нас к противоречию с законом сохранения энергии.  

Внутренняя энергия вещества зависит при данных условиях не только от химической природы его, но и от агрегатного состояния, а для кристаллов - и от модификации их.  

Внутренняя энергия вещества представляет собой его полную энергию, которая суммируется из кинетической и потенциальной энергий, составляющих вещество атомов и молекул, а также элементарных частиц, образующих атомы и молекулы. Она включает: 1) энергию поступательного, вращательного и колебательного движения всех частиц; 2) потенциальную энергию взаимодействия (притяжения и отталкивания) между ними; 3) внутримолекулярную химическую энергию; 4) внутриатомную энергию; 5) внутриядерную энергию; 6) гравитационную энергию; 7) лучистую энергию, заполняющую пространство, занятое телом, и обеспечивающую внутри тела тепловое равновесие между отдельными его участками. Внутренняя энергия не включает потенциальную энергию, обусловленную положением системы в пространство, и кинетическую энергию движения системы как целого.  

Внутренняя энергия вещества превращается в энергию излучения.  

Внутренней энергией вещества называется сумма кинетических энергий всех молекул и потенциальных энергий взаимодействия между молекулами. Чем больше величина внутренней энергии, тем больше тепла содержится в теле и тем выше его температура.  

Увеличение внутренней энергии вещества при испарении без изменения температуры происходит в основном благодаря тому, что при переходе в пар среднее расстояние между молекулами увеличивается. При этом возрастает их потенциальная энергия, так как для того, чтобы раздвинуть молекулы на большие расстояния, нужно затратить работу на преодоление сил притяжения молекул друг к другу.  

Под внутренней энергией вещества понимают сумму кинетической энергии движения молекул, потенциальной энергии их взаимодействия, а также энергии колебания атомов внутри молекул. При определении состояния тела величина внутренней энергии строго определенна, поэтому ее также относят к параметрам состояния тела.  

При этом внутренняя энергия вещества превращается в энергию излучения (энергию фотонов или электромагнитных волн), которая, попадая на тела, способные ее поглощать, снова превращается во внутреннюю энергию. Например, при полете космического корабля в межпланетном пространстве его поверхность поглощает излучение Солнца.  

Так как внутренняя энергия веществ является функцией объема, давления и температуры, то, очевидно, и тепловые эффекты реакций зависят от условий, при которых эти реакции протекают. Практически наибольшее значение имеет влияние температуры на тепловые эффекты процессов.  

Показать, что внутренняя энергия вещества с уравнением состояния в форме pTf (V) не зависит от объема.  

Показать, что внутренняя энергия вещества с уравнением состояния в форме р / (F) Т не зависит от объема.  

Вследствие изменения при нагреве внутренней энергии вещества практически все физические свойства последнего в большей или меньшей степени зависят от температуры, но для ее измерения выбираются по возможности те из них, которые однозначно меняются с изменением температуры, не подвержены влиянию других факторов и сравнительно легко поддаются измерению. Этим требованиям наиболее полно соответствуют такие свойства рабочих веществ, как объемное расширение, изменение давления в замкнутом объеме, изменение электрического сопротивления, возникновение термоэлектродвижущей силы и интенсивность излучения, положенные в основу устройства приборов для измерения температуры.  

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Фрисолак описание и состав Фрисолак описание и состав Коричневые кожаные сапоги Коричневые кожаные сапоги Как завязывать шарф на пальто: разные виды узлов Как завязать круговой шарф на пальто Как завязывать шарф на пальто: разные виды узлов Как завязать круговой шарф на пальто