Свободная энергия Гиббса. Направление химического процесса. Что такое энергия гиббса

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Расчет ΔG для химических процессов можно осуществить двумя способами. В первом способе используется соотношение (4.3)

Рассмотрим в качестве примера расчет ΔG 0 для реакции

Символ "°" , как и прежде, указывает на стандартное состояние всех участников реакции.

Известно, что стандартная энтальпия образования воды равна

Используя табличные значения стандартных энтропий участников реакции, выраженных в энтропийных единицах, э.е. (Дж/моль К): =126 э.е.;

вычислим AS 0 , используя уравнение (3.6):

Таким образом, найдем, что

Полученная отрицательная величина говорит о том, что в стандартных условиях эта реакция должна идти слева направо.

Во втором способе расчета ΔG химических реакций используют то, что эту величину можно рассчитать по известным величинам ΔG других реакций, комбинация уравнений которых дает интересующее нас уравнение реакции (аналогично расчету тепловых эффектов реакции). При этом мы исходим из свойств этой функции как функции состояния: считаем ΔG независимым от пути проведения процесса.

Наиболее удобно использовать для этих целей AG реакций образования (ΔG o 6 p). С реакциями образования мы знакомились, когда изучали первое следствие из закона Гесса. Напоминаем, что реакциями образования в термодинамике считаются такие реакции, в которых 1 моль вещества в стандартном состоянии при данной температуре образуются из простых веществ , взятых в их стандартном состоянии при той же температуре. Реакции образования часто бывают гипотетическими, т.е. не идущими реально, а лишь соответствующими приведенному выше определению. В термодинамических таблицах приводятся изменения энергии Гиббса для реакций образования при стандартных условиях ( ΔG^)- Понятно, что ΔG° 6 p простых веществ равно нулю.

Используя ΔG р, можно рассчитать стандартное изменение энергии Гиббса ( ΔG 0) любой химической реакции. Эта величина равна разности стандартных энергий Гиббса для реакций образования продуктов реакции и исходных веществ с учетом стехиометрических коэффициентов:

(4.4)

В качестве примера рассчитаем (Δ G°) важного биохимического процесса - реакции окисления глюкозы:

В биологических системах такое большое количество энергии освобождается нe сразу, а небольшими порциями в сложном ряду химических превращений.

Для расчета изменения энергий Гиббса реакций при температурах, отличающихся от стандартных ( ΔG T), надо знать величины теплоемкостей участников реакции в интервале температур от 298 К до Т. Расчетные соотношения получают следующим образом:

Так как в соответствии с уравнениями (2.18а) и (3.7)

Аналогичным образом можно получить выражение зависимости ΔF от температуры:

(4.6)

Для практического использования функций ΔF и ΔG полезно знать ответы на следующие вопросы.

1. Каковы различия между ΔF и ΔG химических реакций при Т = const?

Из определений ΔF и ΔG следует, что

В реакциях в конденсированных средах (твердых и жидких) обычно изменением объема можно пренебречь ( ΔV = 0). Тогда

Если в реакциях участвуют газы и можно их считать идеальными , то

При ΔV = 0, т.е. когда реакция идет без изменения числа молей,

2. Какие выводы можно сделать, получив значения термодинамических критериев возможности самопроизвольного протекания процессов?

Если термодинамика дает отрицательный ответ на вопрос о возможности самопроизвольного протекания процесса (ΔF > 0 или ΔG > 0), это означает, что без внешнего подвода энергии процесс невозможен. Процесс может самопроизвольно протекать только в обратном направлении.

Если термодинамика дает положительный ответ ( ΔF< 0 или ΔG < 0), это говорит только о возможности протекания процесса. Но часто в реальных условиях такой процесс не идет. Например, для реакции образования С0 2 ΔG 0 = -395,9 кДж/моль. Но графит с кислородом при 298 К и р = 1 атм не реагирует. Чтобы процесс шел, необходимо создать условия для увеличения скорости (запал, катализаторы и т.д.).

3. Может ли идти процесс, если ΔF > 0 или ΔG > 0?

Может, но не самопроизвольно. Для его проведения надо затратить энергию. Пример - процесс фотосинтеза, идущий в растениях под воздействием солнечной энергии. Другой пример - протекание реакций, характеризующихся ΔG > 0, при сопряжении их с реакциями, для которых AG < 0. При этом сумма величин ΔG для всех стадий процесса, включая сопряженные реакции, отрицательна. Например, для синтеза сахарозы из глюкозы и фруктозы:

ΔG 0 = 21 кДж/моль и, следовательно, прямая реакция самопроизвольно протекать не может. Вместе с тем, известно, что в организмах этот процесс происходит. Сопряженной реакцией в этом случае является гидролиз аде- позинтрифосфата (АТФ) с образованием АДФ и фосфорной кислоты (Ф):

Сопряжение осуществляется путем образования в качестве промежуточного соединения глюкозо-1-фосфата. Реакция идет в две стадии:

1- я стадия: АТФ + глюкоза -> глюкозо-1-фосфат + АДФ;

ΔG 0 = -29,4 кДж/моль.

2- я стадия: глюкозо-1 -фосфат + фруктоза -> сахароза + Ф; AG 0 = 0.

Так как ΔG является величиной аддитивной, суммарный процесс можно записать в виде суммы двух стадий:

АТФ + глюкоза + фруктоза = сахароза + АДФ + Ф; ΔG 0 =

29,4 кДж/моль.

Такое сопряжение типично для многих биологических реакций.

В живых организмах освобожденная при окислении глюкозы энергия не сразу расходуется в различных процессах жизнедеятельности, а запасаeтся впрок в различных соединениях, богатых энергией, таких, как эфиры фосфорной кислоты (АТФ, ЛДФ, креатин- и аргининфосфаты и др.).

4. В каких случаях АН (или ΔU)

В общем случае критерием самопроизвольности является величина ΔG (или ΔF) процесса.

Так как ΔG = ΔН - TΔS (или ΔF = ΔU - TΔS), то при ΔS = 0 (в изоэн- тронийных условиях) ΔG = ΔН (или ΔF= ΔU). В этом случае ΔН (или ΔU) является критерием самопроизвольности процесса. При этом самопроизвольно идут экзотермические реакции ( ΔН < 0, ΔU < 0).

5. В каких случаях ΔS является критерием самопроизвольности процесса?

Рассуждения аналогичны приведенным в п. 4.

Так как ΔG = ΔН - TΔS (или ΔF = ΔU - TΔS), то при отсутствии тепловых эффектов реакций (АН = 0, ΔU = 0) ΔG = -TΔS (или ΔF= -TΔS). В этом случае ΔS является критерием самопроизвольности процесса. При этом самопроизвольно идут процессы с ростом энтропии (ΔS > 0), т.е. процессы, связанные с разложением веществ, их деструкцией, дезагрегацией.

6. Каковы условия самопроизвольного протекания экзотермических реакций ( ΔН < 0, ΔU < 0)?

Выберем для определенности изобарные условия протекания экзотермических реакций: ΔН < G = АН - TΔS.

Рассмотрим, как меняется знак ΔG при варьировании величины ΔS:

  • а) если ΔS > 0, то ΔG = ΔН - TΔS
  • б) если ΔS = 0, то ΔG = ΔН - TΔS
  • в) если ΔS G = ΔΔН - TΔS TΔS :
    • |ΔH|>|TΔS|. При этом ΔG 0. Процесс идет самопроизвольно,
    • | ΔH | = |TΔS|. При этом ΔG = 0. Состояние равновесия,
    • | ΔH |G > 0. Процесс не идет слева направо.

Таким образом, экзотермические реакции термодинамически запрещены только при значительном уменьшении энтропии, например, в некоторых процессах структурирования, образования дополнительных связей и т.д.

Еще один важный вывод из этих рассуждений: в изолированных системах самопроизвольно могут идти процессы с уменьшением энтропии , если они сопровождаются значительным тепловым эффектом. Это особенно важно для понимания возможности самопроизвольного усложнения систем, например, в процессе роста живых организмов. В этом случае источником энергии могут являться все те же богатые энергией эфиры фосфорной кислоты (АТФ, АДФ, креатин- и аргининфосфаты и др.). Кроме того, при рассмотрении реальных систем следует иметь в виду, что они практически не бывают изолированными и имеется возможность подачи энергии извне.

7. Каковы условия самопроизвольного протекания эндотермических реакций ( ΔН > 0)?

Выберем для определенности изобарные условия протекания эндотермических реакций: ΔH> 0. При этом возможность самопроизвольного протекания реакции определяется знаком ΔG = ΔН - TΔS.

Как и в предыдущем случае, рассмотрим, как меняется знак ΔG при варьировании величины ΔS:

  • а) если ΔS > 0, то ΔС = ΔН - TΔS может иметь различные знаки в зависимости от абсолютной величины TΔS :
    • ΔН При этом ΔС
    • ΔН = TΔS. При этом ΔG = 0. Состояние равновесия,
    • ΔН > TΔS. При этом ΔС >
  • б) если ΔS = 0, то АС = ΔН - TΔS > 0. Процесс не идет самопроизвольно слева направо;
  • в) если ΔS 0, то ΔС = ΔН - TΔS > 0. Процесс не идет самопроизвольно слева направо.

Таким образом, эндотермические реакции идут самопроизвольно только при значительном увеличении энтропии в реакции, например, в процессах разложения, деструкции, дезагрегации.

  • 8. Как влияет повышение температуры на ΔU, ΔН, ΔS, ΔG и aлхимических реакций:
    • а) зависимость ΔU от температуры выражается уравнением Кирхгоффа (2.21а):

U растет при Δc v > 0 и падает при Δc v < 0. При ΔСу= 0 величина ΔU не зависит от температуры;

б) зависимость ΔН от температуры выражается уравнением Кирхгоффа (2.20а):

С ростом температуры величина ΔН растет при Δ с р > 0 и надает при Δс р < 0. При Δс р = 0 величина ΔН не зависит от температуры;

в) зависимость ΔS от температуры выражается уравнением (3.8а):

С ростом температуры ΔS растет при Δс р > 0 и падает при Δс /; < 0. При Δс р =0 величина ΔS не зависит от температуры;

г) зависимость ΔF от температуры выражается уравнением (4.6)

Часто можно пренебречь двумя последними слагаемыми из-за их незначительной величины по сравнению с первыми двумя слагаемыми:

Приближенно можно заключить, что с ростом температуры ΔF растет при ΔS < 0 и надает при ΔS > 0. При ΔS = 0 величина ΔF нe зависит от температуры;

д) зависимость ΔG от температуры выражается уравнением (4.5а):

Часто можно пренебречь двумя последними слагаемыми из-за их меньшей величины по сравнению с первыми двумя слагаемыми:

Приближенно можно заключить, что с ростом температуры ΔG растет при ΔS < 0 и падает при ΔS > 0. При ΔS = 0 величина ΔG не зависит от температуры.

Стандартная энергия Гиббса реакции равна сумме стандартных энергий Гиббса продуктов реакций за вычетом суммы стандартных энергий Гиббса исходных веществ с учетом стехиометрических коэффициентов уравнения реакции.

где - стандартная энергия Гиббса реакции,

- сумма стандартных энергий Гиббса продуктов реакции,

- сумма стандартных энергий Гиббса исходныхвеществ,

n, n / - стехиометрические коэффициенты исходных веществ и конечных продуктов в уравнении реакции.

Стандартные значения энергии Гиббса для 1 моля вещества при Т = 298 К приведены в справочнике /5, табл.44; 6, табл.1/.

Решение :

1)Расчет энергии Гиббса.

Находим в справочнике /5, табл.44/ значения стандартных энергий Гиббса для веществ реакции:

а) продукты реакции

,

,

б) исходные вещества

,

.

Применяя уравнение (63), получим:

Вывод . Полученное значение энергии Гиббса () указывает на то, что данная реакция в закрытой системе может протекать в стандартных условиях в прямом направлении.

2) Расчет энергии Гельмгольца.

Для расчета изохорно-изотермического потенциала рассмотрим соотношение между энергией Гиббса и энергией Гельмгольца:

, , но .

т.е. .

Если в реакции принимают участие только конденсированные фазы (твердые и жидкие вещества), то изменение объема DV равно нулю.

Если в реакции участвуют газообразные продукты, то изменением объема пренебрегать нельзя.

Рассмотрим простейший случай, когда газы, участвующие в реакции, подчиняются законам идеального газа. Тогда согласно уравнению Клапейрона-Менделеева можно записать PDV=DnRT .

Dn=n кон - n исх,

где n кон - число молей газообразных конечных продуктов;

n исх – число молей газообразных исходных веществ.

В нашем примере газообразный продукт один – углекислый газ, поэтому Dn = 0 - 1= - 1.

Вывод . Так как полученное в результате расчета значение DF <0, то в изохорно-изотермическом процессе в закрытой системе будет протекать самопроизвольный процесс.

· Для нахождения энергии Гиббса можно применять уравнение (56), которое дает возможность производить расчет как в стандартных условиях, так и при любой другой температуре.

Пример 2 . Вычислить энергию Гиббса и Гельмгольца при Т 1 = 298 К и Т 2 = 473 К, при постоянном давлении 1,013×10 5 Па для реакции:

Как скажется повышение температуры на направления протекания данной реакции?

Решение . Для расчета DG реакции воспользуемся уравнением (56):

,

где DH и DS - соответственно изменение энтальпии и энтропии реакции при заданной температуре:

а) Т =298 К.

Определяем изменение стандартной энтальпии реакции D r H 0 (298) (расчет приведен в примере 1 раздела 1.3.3): D r H 0 (298) = -170,42 кДж.

D r S 0 (298)(расчет приведен в примере 1 раздела 1.5.4): D r S 0 (298) = -133,77 Дж.

Вывод . Расчет стандартной энергии Гиббса по справочным данным, приведенный в предыдущем примере, и расчет по уравнению (56), приведенный в данном примере, практически совпадают. Относительная ошибка составляет:

Расчет DF (298)см. в этом же разделе, пример 1.

б) Т = 473 К.

Определяем изменение энтальпии реакции D r H (473) (расчет приведен в примере 2 раздела 1.4.2):

D r H (473) = -125,79 кДж.

Определяем изменение энтропии реакции D r S (473) (расчет приведен в примере 1 раздела 1.5.4):

D r S (473) = -12,9 Дж.

Подставим полученные данные в уравнение (56):

Расчет DF проводим согласно уравнению (64):

Вывод . Ответ на последний вопрос задачи определяется знаком D r S и D r H (см. табл. 1). В нашем случае , т.е. в уравнении член (- TDS) для нашей реакции положителен. Следовательно, с повышением температуры Т в изобарно-изотермическом процессе значение D r G будет возрастать (т.е. становиться менее отрицательным). Это означает, что повышение температуры будет препятствовать протеканию рассматриваемой реакции в прямом направлении.

В изохорно-изотермическом процессе будут наблюдаться аналогичные тенденции для энергии Гельмгольца.

Преобразуем данное уравнение и проинтегрируем:

.

Если Т 1 = 298 К, то уравнение примет вид:

или (65)

В зависимости от степени точности возможны три варианта расчета энергии Гиббса по этому способу.

Первый вариант . Предположим, что энтропия реакции не зависит от температуры, т.е. D r S 0 (298) = D r S (Т 2), тогда:

Полученный результат расчета дает существенную погрешность.

Пример 3 . Вычислить энергию Гиббса предложенным способом для реакции:

При Т 2 = 473 К, при постоянном давлении 1,013×10 5 Па.

Решение.

Стандартную энергию Гиббса находим по уравнению (63) (см. пример 1 в разделе 1.5.8.): D r G 0 (298) = -130,48 кДж.

Определяем изменение стандартной энтропии реакции D r S 0 (298) (расчет приведен в примере 1 раздела 1.5.4): D r S 0 (298) = -133,77 Дж.

Подставим полученные данные в уравнение (66) и произведем расчет:

Вывод . Результат расчета отличается от результата в примере 2,б раздела 1.5.8, т.к. последний вариант является приближенным, не учитывается фазовый переход воды.

Второй вариант. Предположим, что энтропия реакции зависит от температуры

Если теплоемкость не зависит от температуры D r С Р = const , то после интегрирования имеем:

Подставим полученное значение D r S (Т )в (65):

После интегрирования получим:

учитывая зависимость энтропии реакции от температуры.

Решение.

Определяем D r С Р реакции по первому следствию закона Гесса:

Воспользуемся значениями стандартных изобарных теплоемкостей для индивидуальных веществ, приведенных в справочнике /5, табл. 44/:

а) продукты реакции:

;

б) исходные вещества:

,

Расчет стандартной энергии Гиббса для данной реакции приведен в примере 1 раздела 1.5.8. D r G 0 (298) = -130,48 кДж.

Расчет стандартной энтропии для данной реакции приведен в примере 1 раздела 1.5.4. D r S 0 (298) = -133,77 Дж.

Подставляя полученные значения в (67), получим:

Вывод: данный расчет также является приближенным, т.е. он не учитывает зависимость теплоемкости от температуры, но более точным, чем первый способ, рассмотренный выше.

Пример, рассматриваемый нами, является более сложным, т.к. в предложенном интервале температур у одного из веществ, а именно у воды, существует фазовый переход, что необходимо учитывать. Это усложняет расчет и делает его громоздким.

В таких случаях вычислить энергию Гиббса можно, воспользовавшись формулой (56). Расчет этот приведен в примере 2 раздела 1.5.8.

На практике часто для расчета энергии Гиббса используют метод Темкина - Шварцмана (1946 г.), позволяющий стандартную энергию Гиббса при 298 К пересчитать для любой температуры /1, 4, 7, 8/.

Пример 5. Вычислить изменение энергии Гиббса при изотермическом сжатии 0,005 м 3 кислорода от Р 1 =0,1013×10 5 Па до Р 2 =1,013×10 5 Па (Т = 0 0 С ), считая кислород идеальным газом.

Решение. Из уравнение Менделеева-Клапейрона находим число молей кислорода, участвующих в реакции:

Для определения DG воспользуемся формулой (58):

.

Т.к. процесс протекает при Т= const, то второе слагаемое будет равно нулю. Расчет проводим по формуле dG = VdP.

Из уравнения Менделеева-Клапейрона выразим V:

Подставляем:

Интегрируем и подставляем данные задачи:

Вывод. При изотермическом сжатии кислорода процесс не может протекать самопроизвольно.

Пример 6. Теплота плавления льда при 0 0 С равна 335 Дж/г. Удельная теплоемкость воды равна . Удельная теплоемкость льда равна . Найти DG, DH, DS для процесса превращения 1 моль переохлажденной воды при – 5 0 С в лед.

Решение. Переохлажденная жидкость не находится в состоянии равновесия с твердой фазой. Рассматриваемый процесс не является статическим, поэтому вычислить энтальпию и энтропию по теплоте кристаллизации для переохлажденной жидкости нельзя.

Для вычисления данных функций мысленно заменим нестатический процесс тремя квазистатическими, в результате которых система придет из начального состояния в конечное.

1-й процесс. Нагревание обратимым путем 1 моль воды до температуры замерзания. При этом изменение энтальпии и энтропии согласно уравнениям (26) и (36):

где С Р – молярная теплоемкость воды,

Подставляя в формулы данные задачи, получим:

2-й процесс. Кристаллизация воды при 0 0 С (273 К). В условиях задачи дана удельная теплота плавления ( пл.), т.е. теплота фазового перехода 1 г воды из твердого состояния в жидкое.

Т.к. ,

то ,

где DН 2 – теплота кристаллизации 1 моля воды,

пл. уд – удельная теплота плавления, приведенная в задаче,

М – молярная масса воды.

Энтропия фазового перехода рассчитывается по формуле (47):

.

Подставим данные и получим:

3-й процесс. Обратимое охлаждение льда от 273 до 268 К. Расчет энтальпии и энтропии проводим аналогично первому процессу.

, ,

где С Р – молярная теплоемкость льда,

Подставляя данные, получим:

Общее изменение энтальпии и энтропии в изобарном процессе

Изменение энергии Гиббса в рассматриваемом процессе рассчитывается по формуле (56).

Вывод. По результатам расчета видно, что при превращении 1 моль переохлажденной воды в ледэнтальпия и энтропия в системе убывает. Это значит, что самопроизвольный процесс в таком случае возможен только при низких температурах, когда энергия Гиббса DG приобретает отрицательные значения (см. табл.2), что мы и наблюдаем в нашем примере.

Вопросы для самопроверки:

1. Дайте определение самопроизвольных процессов.

2. Какие процессы называют равновесными?

3. Основные формулировки второго начала термодинамики. Его математического выражение.

4. Каковы возможности второго начала термодинамики?

5. Выведите формулу объединенного закона термодинамики.

6. Каков физический смысл заложен в понятие энтропия?

7. Как изменяется энтропия в равновесных процессах?

8. Как изменяется энтропия в самопроизвольных процессах?

9. В каких системах изменение энтропии может служить мерой направленности физико – химических процессов?

10. В каком соотношении находятся молярные энтропии трех агрегатных состояний одного вещества: газа, жидкости, твердого тела?

11. В изолированной системе самопроизвольно протекает химическая реакция с образованием некоторого количества конечного продукта. Как изменяется энтропия системы?

12. В каких условиях можно использовать энтропию, как функцию, определяющую направление процесса?

13. Какова зависимость энтропии реакции от условий протекания процесса (влияние температуры, давления, объема)?

14. Как рассчитывается энтропия реакции?

15. Зачем были введены термодинамические потенциалы?

16. Каков физический смысл энергии Гиббса, энергии Гельмгольца?

17. В каких системах изменение изобарно – изотермического потенциала может служить мерой направленности физико – химических процессов?

18. В каких системах изменение изохорно – изотермического потенциала может служить мерой направленности физико – химических процессов?

19. За счет чего совершается максимально полезная работа химической реакции при постоянном давлении и температуре

20. В каких реакциях энергия Гиббса и энергия Гельмгольца приобретают одинаковые значения?

21. Как зависит от температуры изменение энергии Гиббса химической реакции?

22. Процесс протекает в условиях постоянства температуры и давления в закрытых системах. Какой термодинамический потенциал следует выбрать в качестве критерия протекания самопроизвольного процесса в этих условиях?

23. Как изменяется энергия Гиббса, если в закрытой системе протекает реакция слева направо при постоянном давлении и температуре?

24. Как изменится энергия Гиббса, если в закрытой системе при постоянном давлении и температуре реакция протекает справа налево?

25. Жидкость превращается в пар при определенной температуре и давлении. Каково соотношение между DG и DF этого процесса?

26. За счет чего совершается максимальная полезная работа химической реакции при постоянном объеме и температуре?

27. Какой термодинамический потенциал следует выбрать в качестве критерия направления реакции, если она протекает в закрытом автоклаве при постоянной температуре? Каково условие самопроизвольного течения процесса, выраженное при помощи этого потенциала?

28. Как энергия Гельмгольца (изохорно – изотермический потенциал) системы зависит от объема при постоянной температуре (если единственный вид работы – работа расширения)? Напишите математическое выражение зависимости.

29. При каких постоянных термодинамических параметрах изменение энтальпии DН может служить критерием направления самопроизвольного процесса? Какой знак DН в этих условиях указывает на самопроизвольный процесс?

30. Равновесная система состоит из трех частей, каждая из которых обладает определенной энтропией: S 1 , S 2 , S 3 . Как можно выразить энтропию системы в целом?

31. Как изменяется энергия Гельмгольца (изохорно – изотермический потенциал) при изотермическом сжатии газа в идеальном состоянии?


Третий закон термодинамики

Анализируя изменения тепловых эффектов и изотермических потенциалов в области низких температур, Нернст в 1906 году высказал предположение, что при приближении к абсолютному нулю значения тепловых эффектов и изотермического потенциала сближаются, и кривые DH = f(T) и DG = f(T) при Т = 0 касаются друг друга и имеют общую касательную (рис.3). Постулат Нернста (тепловая теорема Нернста) справедлив лишь для систем, состоящих из кристаллических веществ.

В математической форме это утверждение выражаетсятак: вблизи абсолютного нуля в реакциях, протекающих в конденсированных системах при Т = 0 ,

и . (69)

Уравнения (69) и (70) являются математическим выражением третьего закона термодинамики.

В соответствии с уравнением (60) из уравнения Нернста следует, что вблизи абсолютного нуля реакции в конденсированных системах не сопровождаются изменением энтропии, т.е. для них DS = 0.

Рис. 3. Относительное положение

кривых DH=f(T) и DG=f(T ) в области

низких температур

Планк в 1912 году предположил, что энтропия правильно сформированного кристалла любого чистого вещества при абсолютном нуле равна нулю (постулат Планка).

Правильно сформированный кристалл - это кристалл с идеальной кристаллической решеткой. Математическое выражение постулата Планка:

Такая зависимость отсутствует в твердых растворах и стеклообразных веществах.

И постулат Планка, и теорема Нернста – оба этих утверждения и являются третьим законом термодинамики, который получил широкое применение для определения абсолютных значений энтропий чистых веществ:

Из приведенного уравнения (71) следует, что в области температур, близких к нулю, теплоемкость веществ тоже стремится к нулю:

Это утверждение основывается на результатах многочисленных измерений теплоемкостей различных веществ при низких температурах.

При дальнейшем развитии термодинамики выяснился условный характер постулата Планка. Было найдено, что при абсолютном нуле некоторые составляющие энтропии, связанные со спинами ядер и изотопным эффектом, не становятся равными нулю. При обычных химических реакциях эти составляющие не меняются, поэтому их практически можно не учитывать. Для таких реакций выводы постулата Планка не нуждаются в уточнении. Однако сам постулат приобретает характер условного допущения.


Варианты заданий для расчетных работ

Определить DH, DU, DS, DF, DG реакций при постоянном давлении

Р = 1,013 10 5 Па и заданной температуре.

№ п/п Уравнение реакции T , K
Fe 2 O 3(т) + 3CO (г) = 2Fe (т) + 3CO 2(г)
CaO (т) + CO 2(г) = CaCO 3(т)
Fe 2 O 3(т) + 3C (т) = 2Fe (т) + 3CO (г)
Al 2 O 3(т) + 3SO 3(г) = Al 2 (SO 4) 3(т)
2Fe 2 O 3(т) + 3C (т) = 4Fe (т) + 3CO (г)
Na 2 CO 3(т) + H 2 SO 4(ж) = Na 2 SO 4(т) + H 2 O (ж) + CO 2(г)
SO 3(г) + H 2 O (ж) = H 2 SO 4(ж)
Na 2 CO 3(т) + Ca(OH) 2(т) = CaCO 3(т) +2NaOH (т)
CaCO 3(т) = CaO (т) + CO 2(г)
2K + H 2 SO 4(ж) = K 2 SO 4(т) + H 2(г)
Ba(OH) 2(т) + 2HNO 3(г) = Ba(NO 3) 2(т) + H 2 O (ж)
2FeS (т) + 3,5O 2(г) = Fe 2 O 3(т) + 2SO 2(г)
4HCl (г) + O 2(г) = 2H 2 O (ж) + 2Cl 2(г)
NH 4 Cl (т) = NH 3(г) + HCl (г)
2N 2(г) + 6H 2 O (г) = 4NH 3(г) + 3O 2(г)
2H 2(г) + CO (г) = CH 4 O (г) (метанол)
0,5S 2(г) + 2H 2 O (ж) = SO 2(г) + 2H 2(г)
0,5S 2 (г) + 2CO 2(г) = SO 2(г) + 2CO (г)
SO 2(г) + Cl 2(г) = SO 2 Cl 2(г)
4NO (г) + 6H 2 O (г) = 4NH 3(г) + 5O 2(г)
2H 3 PO 4(ж) + Ca(OH) 2(т) = Ca(H 2 PO 4) 2 + 2H 2 O (ж)
2KOH (т) + H 2 SO 4(ж) = K 2 SO 4(т) + H 2 O (г)
SO 2(г) + 2CO (г) = S (ромб) + 2CO 2(г)
K 2 CO 3(т) + 2HNO 3(ж) = 2KNO 3(т) + H 2 O (ж) + CO 2(г)
NaI (т) + HCl (г) = NaCl (т) + HI (г)
Ca(OH) 2(т) + 2HCl (г) = CaCl 2(т) + 2H 2 O (ж)
Ba(OH) 2(т) + H 2 SO 4(ж) = BaSO 4(т) + 2H 2 O (ж)
BeO (т) + H 2 SO 4(ж) = BeSO 4(т) + H 2 O (ж)
Al 2 O 3(т) + 6HCl (г) = 2AlCl 3(т) + 3H 2 O (г)
CuO (т) + H 2 S (г) = CuS (т) +H 2 O (г)
CuO (т) + 2HCl (г) = CuCl 2(т) + H 2 O (ж)
2CO (г) + 3H 2(г) = H 2 O (ж) + C 2 H 4 O (г) (ацетальдегид)
Ag 2 O (т) + 2HNO 3(ж) = 2AgNO 3(т) + 2H 2 O (ж)
CO 2(г) + 2NH 3(г) = H 2 O (ж) + CH 4 N 2 O (т) (карбамид)
NaNO 3(т) + KCl (т) = NaCl (т) + KNO 3(т)
4NH 3(г) + 4NO 2(г) + 2H 2 O (ж) + O 2(г) = 4NH 4 NO 3(т)
(NH 4) 2 SO 4(т) + Ba(NO 3) 2 = BaSO 4(т) + 2NH 4 NO 3(т)
(NH 4) 2 SO 4(т) + CaCl 2(т) = CaSO 4(т) + 2NH 4 Cl (т)

Окончание

№ п/п Уравнение реакции T , K
C 2 H 2(г) + H 2 O (ж) = C 2 H 4 O (г) (ацетальдегид)
CH 4(г) + HNO 3(ж) = H 2 O (ж) + CH 3 NO 2(г) (нитрометан)
8Al (т) + 3Fe 3 O 4(т) = 9Fe (т) + 4Al 2 O 3(т)
2NH 4 NO 3(т) = 4H 2 O (ж) + O 2(г) + 2N 2(г)
C 2 H 2(г) + 2H 2 O (ж) = CH 3 COOH (ж) + H 2(г)
CH 4(г) + 2H 2 S (г) = CS 2(г) + 4H 2(г)
H 2 S (г) + CO 2(г) = H 2 O (г) + COS (г)
2NaHCO 3(т) = Na 2 CO 3(т) + H 2 O (г) + CO 2(г)
Zn(OH) 2(т) + CO 2(г) = ZnCO 3(т) + H 2 O (ж)
ZnS (т) + H 2 SO 4(ж) = ZnSO 4(т) + H 2 S (г)
2AgNO 3(т) = 2Ag (т) + O 2(г) +2NO 2(г)
2KMnO 4(т) + 3H 2 O 2(г) = 2MnO 2(т) + 2KOH (т) + 3O 2(г) + 2H 2 O (ж)
KClO 3(т) + H 2 O 2(г) = KCl (т) + 2O 2(г) + H 2 O (ж)
3Cl 2(г) + 6KOH (т) = KClO 3(т) + 3H 2 O (ж) + 5KCl (т)
4Cl 2(г) + H 2 S (г) + 4H 2 O (ж) = 8HCl (г) + H 2 SO 4(ж)
2KOH (т) + MnO (т) + Cl 2(г) = MnO 2 + 2KCl (т) + H 2 O (ж)
P (т) + 5HNO 3(ж) = H 3 PO 4(ж) + 5NO 2(г) + H 2 O (ж)
Cu (т) + 2H 2 SO 4(ж) = CuSO 4(т) + SO 2(г) + 2H 2 O (ж)
PbS (т) + 4H 2 O 2(г) = PbSO 4(т) + 4H 2 O (ж)
8HJ (г) + H 2 SO 4(ж) = 4J 2 + H 2 S (г) + 4H 2 O (ж)
Ca(OH) 2(т) + H 2 S (г) = CaS (т) + 2H 2 O (ж)
P 2 O 5(т) + 3H 2 O (ж) = 2H 3 PO 4(ж)

ЛАБОРАТОРНЫЙ ПРАКТИКУМ

Энергией Гиббса реакции называется изменение энергии Гиббса ΔG при протекании хими-ческой реакции. Так как энергия Гиббса системы G = Н - TS, её изменение в процессе определяется по формуле: ΔG = ΔH-TΔS (4.1)

где Т - абсолютная температура в Кельвинах.

Энергия Гиббса химической реакции характеризует возможность её самопроизвольного проте-канияпри постоянных давлении и температуре. Если ΔG<0, то реакция может протекать самопроиз-вольно, при ΔG>0 самопроизвольное протекание реакции невозможно, если же ΔG = 0, система на-ходится в состоянии равновесия.

Для расчёта энергии Гиббса реакции по формуле (4.1) отдельно определяются ΔН и ΔS. При этом в практических расчётах пользуются приближениями (2.4) и (3.4).

Пример 4.1. Расчёт энергии Гиббса реакции, выраженной уравнением 4NH 3 (г) + 5O 2 (г) = 4NO(г) + + 6Н 2 O(г), при давлении 202.6 кПа и температуре 500°С (773К).

Согласно условию, реакция протекает при практически реальных значениях давления и темпе-ратуры. при которых допустимы приближения (2.4) и (3.4), т.е.

Δ Н 773 ≈ Δ Н 0 298 = - 904.8 кДж = - 904800 Дж. (см. пример 2.2),

а Δ S 773 ≈ Δ S 0 298 = 179,77 Дж/К. (см. пример 3.1).

После подстановки значений Δ H 0 298 и Δ S° 298 в формулу (4.1) получаем:

Δ G 773 = Δ H 773 -773 Δ S 773 ≈ Δ Н 0 298 -773 Δ S 0 298 = - 904800 - 773*179, 1043762 Дж = - 1043,762 кДж.

Полученное отрицательное значение энергии Гиббса реакции Δ G 773 указывает на то, что дан ная реакция в рассматриваемых условиях может протекать самопроизвольно.

Если реакция протекает в стандартных условиях при температуре 298К, расчёт её энергии Гиббса (стандартной энергии Гиббса реакции) можно производить аналогично расчёту стандартной теплоты реакции по фрмуле, котораядля реакции, выраженной уравнением аА + ЬВ = сС + dD, имеет вид:

ΔG ° 298 = (cΔG ° 298,o6p,C + dΔG ° 298,o6p,D) - (aΔG 298,обрА + bΔG° 298,обр,в) (4.2)

где Δ G ° 298, o6p. - стандартная энергия Гиббса образования соединения в кДж/моль (табличные значе-ния) - энергия Гиббса реакции, в которой при температуре 298К образуется 1 моль данного соеди-нения, находящегося в стандартном состоянии, из простых веществ, также находящихся в стан-дартных состояниях 4 *, a Δ G° 298 - стандартная энергия Гиббса реакции в кДж.

Пример 4.2. Расчёт стандартной энергии Гиббса реакции, протекающей по уравнению: 4NH 3 (г) + 5O 2 (г) = 4NO(г) + + 6Н 2 O(г).


В соответствии с формулой (4.2) записываем:

Согласно определению, стандартная энергия Гиббса образования простых веществ равна нулю.

ΔG 0 298 O 2 в выражении не фигурирует ввиду ее равенства нулю

ΔG 0 298 = (4 ΔG 0 298 . no + 6 ΔG 0 298. H 2 O) - 4 ΔG 0 298. NH з После подстановки табличных значений ΔG 0 298 .обР получаем: ΔG 0 298 = (4 (86,69) + 6 (-228, 76)) - 4 (-16,64) = - 959.24 кДж. По полученному результату видно, что так же, как и в примере 4.1, в стандартных условиях рассматриваемая реакция может протекать самопроизвольно

По формуле (4.1) можно определить температурный диапазон самопроизвольного протека-ния реакции. Так как условием самопроизвольного протекания реакции является отрицательность ΔG (ΔG<0), определение области температур, в которой реакция может протекать самопроизвольно, сво-дится к решению неравенства (ΔH-TΔS)

Пример 4.3. Определение температурной области самопроизвольного протекания реакции, вы-раженной уравнением: СаСО 3 (т) = СаО(т) + СO 2 (г).

Находим ΔH u ΔS. ΔH ≈ ΔH° 298 = (ΔН 0 298 , СаО + ΔН° 298, CO 2) - ΔН° 298 , CaCO 3 = (-635,1 + (-393,51)) - (-1206) = 177,39кДж = 177390 Дж; ΔS ≈ ΔS 0 298 = (S 0 298 , СаО + S 0 298.С02) - S 0 298 ,СаСОз = (39,7 + 213,6)- 92,9 = 160,4 Дж/К. Подставляем значения ΔН и ΔS в неравенство и решаем его относительно Т: 177390 - Т*160,4<0, или 177390<Т*160,4, или Т>1106. Т.е. при всех температурах, больших 1106К, бу-дет обеспечиваться отрицательность ΔG и, следовательно, в данном температурном диапазоне бу-дет возможным самопроизвольное протекание рассматриваемой реакции.

Понятие свободной энергии Гиббса было введено в химию с целью объяснения возможности самопроизвольного или спонтанного протекания той или иной реакции. Расчет этой энергии требует знания изменения энтропии процесса и количества энергии, которое поглощается или выделяется при его осуществлении.

Джозайя Уиллард Гиббс

Свободная энергия, которая определяет возможность протекания различных процессов, обозначается большой буквой G. Она получила название энергии Гиббса в честь американского физика-теоретика XIX века Джозайя Уилларда Гиббса, который внес важнейший вклад в развитие современной теории термодинамики.

Интересно отметить, что первый свой тезис, после защиты которого Гиббс получил звание доктора философии, он написал о форме зубцов шестерен. В этом исследовании он использовал геометрические методы для разработки идеальной формы этих зубцов. Термодинамикой ученый начал заниматься лишь в возрасте 32 лет, и в этой области физики добился огромных успехов.

Основные понятия термодинамики

Стандартной энергией Гиббса называется энергия при стандартных условиях, то есть при комнатной температуре (25 ºC) и атмосферном давлении (0,1 МПа).

Для понимания основных принципов термодинамики следует также ввести понятия энтропии и энтальпии системы.

Под энтальпией следует понимать внутреннюю энергию системы, которая находится при данном давлении и в данном объеме. Обозначается эта величина латинской буквой H и равна U+PV, где U - внутренняя энергия системы, P - давление, V - объем системы.

Энтропия системы является физической величиной, которая характеризует меру беспорядка. Иными словами, энтропия описывает особенность расположения частиц, составляющих данную систему, то есть характеризует вероятность существования каждого состояния этой системы. Обозначается она обычно латинской буквой S.


Таким образом, энтальпия является энергетической характеристикой, а энтропия - геометрической. Отметим, что для понимания и описания протекающих термодинамических процессов, абсолютные значения энтропии и энтальпии не несут полезной информации, важны лишь величины их изменений, то есть ΔH и ΔS.

Термодинамические утверждения

Этот закон помогает понять, в каком направлении может произвольно протекать реакция, или же она будет находиться в равновесии. Следующие утверждения являются фундаментальными для термодинамики:

  • Второй закон термодинамики гласит, чтобы процесс в любой системе происходил произвольно, его энтропия должна увеличиваться, то есть ΔS​>0.
  • При постоянных температуре и давлении изменение энергии Гиббса системы определяется по формуле ΔG=ΔH−TΔS.
  • Если для какого-либо процесса ΔG
  • Направление произвольного протекания конкретной реакции может зависеть от температуры в системе.

Самопроизвольные процессы

В химии произвольно протекающими процессами называются те, которые происходят без внешнего подвода к ним энергии. Произвольность протекания говорит о вероятности такой возможности и никак не связано с кинетикой процесса. Так, он может протекать быстро, то есть иметь взрывной характер, но может протекать и очень медленно в течение тысяч и миллионов лет.


Классическим примером самопроизвольно протекающей реакции является превращение углерода в форме алмаза в углерод аллотропной модификации графита. Такая реакция идет настолько медленно, что за время своей жизни человек не заметит каких-либо изменений в исходном алмазе, поэтому и говорят, что алмазы - вечны, хотя если выждать достаточный промежуток времени, то можно увидеть, как блестящий камень становится черным, похожим на сажу графитом.

Выделение и поглощение энергии


Еще одним важным аспектом произвольно протекающих процессов является выделение или поглощение теплоты, в первом случае говорят об экзотермическом процессе, во втором случае - об эндотермическом, то есть речь идет о знаке изменения энтальпии ΔH. Заметим, что как экзотермические, так и эндотермические процессы могут протекать произвольно.

Ярким примером произвольно протекающего процесса является воспламенение топливной смеси в цилиндре двигателя внутреннего сгорания. В этой реакции выделяется большое количество тепловой энергии, которая преобразуется с КПД порядка 30% в механическую энергию, заставляя вращаться коленчатый вал. Последний передает крутящий момент через трансмиссию колесам автомобиля, и машина движется.

Примером эндотермической реакции, которая протекает самостоятельно с поглощением тепла, является растворение обычной поваренной соли NaCl в воде. В этой реакции ΔH = +3.87 кДж/моль > 0. Проверить этот факт можно, измерив температуру воды до растворения в ней соли и после ее растворения. Полученная разница конечной температуры и начальной окажется отрицательной.


Энергия Гиббса процесса

Если какой-либо процесс протекает в системе с постоянным давлением и температурой, тогда второй закон термодинамики можно переписать в следующем виде: G=H−TS. Величина G - свободная энергия Гиббса имеет размерность кДж/моль. Определение спонтанности протекания конкретной реакции зависит от знака изменения этой величины, то есть ΔG. В итоге второй закон термодинамики примет форму: ΔG​=ΔH​−TΔS. Возможны следующие случаи:

  • ΔG>0 - эндергоническая реакция, которая не может произвольно происходить в прямом направлении, но будет самостоятельно идти в обратном направлении с увеличением количества реагентов;
  • ΔG=0 - система находится в равновесии, и концентрации реагентов м продуктов остаются постоянными сколь угодно длительное время.

Анализ полученного уравнения

Введенное выражение для второго закона термодинамики позволяет определить, в каком случае процесс может протекать произвольно. Для этого необходимо проанализировать три величины: изменение энтальпии ΔH, изменение энтропии ΔS и температура T. Заметим, что температура выражается в абсолютных единицах по международной системе мер и весов, то есть в Кельвинах, поэтому она является всегда положительной величиной.

Направление протекания реакции не зависит от температуры если:

  • Реакция является экзотермической (ΔH 0). В таком случае процесс произвольно идет всегда в прямом направлении;
  • Реакция эндотермического характера (ΔH>0) и изменение ее энтропии отрицательное (ΔS

Если же знаки изменения величин ΔH и ΔS совпадают, тогда уже температура играет важную роль в возможности протекания такого процесса. Так, экзотермическая реакция будет идти произвольно при низких температурах, а экзотермическая реакция - при высоких.

Расчет таяния льда


Хорошим примером реакции, в которой знак энергии Гиббса зависит от температуры, является таяние льда. Для такого процесса ΔH = 6,01 кДж/моль, то есть реакция эндотермическая, ΔS = 22,0 Дж/моль*К, то есть процесс происходит с увеличением энтропии.

Вычислим для таяния льда температуру, при которой изменение энергии Гиббса будет равно нулю, то есть система будет находиться в равновесном состоянии. Из второго закона термодинамики получаем: T = ΔH/ΔS, подставляя значения указанных величин, вычисляем T = 6,01/0,022 = 273,18 K.

Если перевести температуру из Кельвинов в привычные градусы Цельсия, получим 0 ºC. То есть при температуре выше этого значение ΔG 0, и произвольно уже будет идти обратный процесс, то есть кристаллизация жидкой воды.

При решении задач этого раздела см. табл. 5-7.

Направление, в котором самопроизвольно могут протекать реакции, определяется совместным действием двух тенденций:

    стремлением системы к переходу в состояние с наименьшей энергией;

    стремлением к наиболее вероятному состоянию.

Первая тенденция характеризуется величиной ∆Н, т.е. самопроизвольно протекают реакции, сопровождающиеся уменьшением энтальпии (∆Н < 0). Действительно, все экзотермические реакции протекают самопроизвольно.

Однако известно достаточно большое число самопроизвольных эндотермических реакций, протекание которых противоречит энергетическому принципу, и может быть обусловлено только стремлением к системы к наиболее вероятному состоянию. В термодинамике доказывается, что наиболее вероятным является наиболее неупорядоченное состояние, связанное с хаотичным движением частиц (молекул, ионов, атомов). Мерой наиболее вероятного (неупорядоченного) состояния системы является термодинамическая функция состояния энтропия S. В изолированных системах процессы протекают самопроизвольно в сторону увеличения энтропии.

Таким образом, с одной стороны, система стремится к уменьшению энтальпии, т.е. к упорядочению, с другой стороны, система стремится к росту энтропии, к беспорядку.

Энтропия возрастает при переходе вещества из кристаллического состояния в жидкое и из жидкого в газообразное; при растворении веществ; при химических реакциях, приводящих к увеличению числа частиц, особенно в газообразном состоянии. Поскольку энтропия является функцией состояния, ее изменение (S) зависит только от начального (S 1) и конечного (S 2) состояний и не зависит от пути процесса:

Если S 2 >S 1 , то S > 0. Если S 2

Для химической реакции: S хр = S 0 прод - S 0 исх.

Энтропия выражается в Дж/(моль. К).

Очевидно, что, характеризуя две противоположные тенденции процесса, энтальпия или энтропия, взятые по отдельности, не могут служить критерием его самопроизвольного протекания. Функцией состояния, учитывающей обе тенденции, является энергия Гиббса G :

G = H T S (1)

или ∆H = ∆G + T ∆S. (2)

Из уравнения (2) следует, что энтальпия химической реакции состоит из двух слагаемых. Первое - ∆G представляет собой ту часть энергии, которая может быть превращена в работу. Поэтому энергию Гиббса иногда называют свободной энергией.

Второе слагаемое – это та часть энергии, которую невозможно превратить в работу. Произведение T·∆S называют рассеянной или связанной энергией, она рассеивается в окружающую среду в виде теплоты.

Энергия Гиббса при постоянном давлении и температуре служит критерием самопроизвольного протекания любого процесса, в том числе и химической реакции. Самопроизвольно протекающие процессы идут в сторону уменьшения потенциала и, в частности, в сторону уменьшения G. Если G < 0, процесс принципиально осуществим; если G > О, процесс самопроизвольно проходить не может. Чем меньше G, тем сильнее стремление к протеканию данного процесса и тем дальше он от состояния равновесия, при котором G = 0 и H= T·S.

Химическая реакция принципиально возможна, если энергия Гиббса уменьшается G <0 . Если ∆G>0, реакция не может протекать самопроизвольно в прямом направлении. Это неравенство свидетельствует о термодинамической возможности самопроизвольного протекания обратной реакции.

Из соотношения (1) видно, что самопроизвольно могут протекать и процессы, для которых H>0 (эндотермические). Это возможно, когда ΔS > 0, но│∆H <T∆S│, например, при высоких температурах, и тогда G < 0.

С другой стороны, экзотермические реакции (H<0) самопроизвольно не протекают, если при S<0 │∆H│>T∆S, следовательно G>0. Эндотермические реакции, сопровождающиеся уменьшением энтропии, в принципе невозможны. Протекание экзотермических реакций с увеличением энтропии термодинамически возможно при любых температурах.

Энергия Гиббса является функцией состояния, поэтому изменение энергии Гиббса в результате протекания химической реакции при стандартных условиях вычисляется по формуле

G хр. = G-G, (3)

а при любых других температурах – по уравнению (1).

Пример 1. В каком состоянии энтропия 1 моль вещества больше при одинаковой температуре: в кристаллическом или парообразном?

Решение. Энтропия есть мера неупорядоченности состояния вещества. В кристалле частицы (атомы, ионы) расположены упорядоченно и могут находиться лишь в определенных точках пространства, а для газа таких ограничений нет. Объем 1 моль газа гораздо больше объема 1 моль кристаллического вещества; возможность хаотичного движения молекул газа больше. А так как энтропию можно рассматривать как количественную меру хаотичности атомно-молекулярной структуры вещества, то энтропия 1 моль паров вещества больше энтропии 1 моль его кристаллов при одинаковой температуре.

Пример 2. Прямая или обратная реакция будет протекать при стандартных условиях в системе

СН 4 (г) + СО 2 2СО(г) + 2H 2 (r)

Решение. Вычислим G прямой реакции. Значения G соответствующих веществ приведены в табл. 6. Зная, что G есть функция состояния и что G для простых веществ, находящихся в устойчивых при стандартных условиях агрегатных состояниях, равны нулю, находим G процесса:

G = 2(-137,27) + 2(0) - (-50,79 - 394,38) = + 170,63 кДж.

То, что G > 0, указывает на невозможность самопроизвольного протекания прямой реакции при Т = 298 К и Р = 1,013∙10 5 Па.

Таблица 6. Стандартные энергии Гиббса образования G некоторых веществ

Вещество

Состояние

G,кДж/моль

Вещество

Состояние

G, кДж/моль

Таблица 7. Стандартные абсолютные энтропии S 0 298 некоторых веществ

Вещество

Состояние

S,Дж/(моль. К)

Вещество

Состояние

S,Дж/(моль. К)

Пример З. На основании стандартных теплот образования (табл. 5) и абсолютных стандартных энтропий веществ (табл. 7) вычислите G реакции, протекающей по уравнению

СО(г) + Н 2 О(ж) = СОз(г) + Н 2 (г).

Решение.  G° = H° - TS°; H и S - функции состояния, поэтому

H 0 х.р. = H 0 прод. - H 0 исх. ;

S 0 х. р. = S 0 прод. - S 0 исх. .

H 0 х. р. = (-393,51 + 0) - (-110,52 - 285,84) = +2,85 кДж;

S 0 х. р. = (213,65+130,59) -(197,91+69,94) =+76,39 = 0,07639 кДж/(моль∙К);

G 0 = +2,85 – 298 - 0,07639 = -19,91 кДж.

Пример 4. Реакция восстановления Fе 2 О 3 водородом протекает по уравнению

Fе 2 О 3 (к)+ ЗН 2 (г) = 2Fе(к) + ЗН 2 О(г); H= +96,61 кДж.

Возможна ли эта реакция при стандартных условиях, если изменение энтропии S = 0,1387 кДж/(моль. К)? При какой температуре начнется восстановление Fе 2 Оз?

Решение. Вычисляем G ° реакции:

G =H-TS= 96,61 - 298 . 0,1387 = +55,28 кДж.

Так как G > 0, то реакция при стандартных условиях невозможна; наоборот, при этих условиях идет обратная реакция окисления железа (коррозия). Найдем температуру, при которой G = 0:

H = TS; T=
К.

Следовательно, при температуре Т = 696,5 К (423,5 0 С) начнется реакция восстановления Fе 2 О 3 . Иногда эту температуру называют температурой начала реакции.

Пример 5. Вычислите H 0 , S 0 , G 0 , - реакции, протекающей по уравнению

Fе 2 Оз(к) + З С = 2 Fe + З СО.

Возможна ли реакция восстановления Fе 2 Оз углеродом при 500 и 1000 К?

Решение. H 0 х.р. и S 0 х.р. находим из соотношений (1)и (2):

H 0 х.р. = - [-822.10 + 30]= -331,56 + 822,10 = +490,54 кДж;

S 0 х.р. = (2 ∙ 27,2 +3 ∙·197,91) - (89,96 + 3 ∙ 5,69) = 541,1 Дж / (моль∙К).

Энергию Гиббса при соответствующих температурах находим из соотношения

G 500 = 490,54 – 500 = +219,99 кДж;

∆G 1000 = 490,54 –1000 = -50,56 кДж.

Так как G 500 > 0, а G 1000 < 0, то восстановление Fе 2 Оз возможно при 1000 К и невозможно при 500 К.

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Фрисолак описание и состав Фрисолак описание и состав Коричневые кожаные сапоги Коричневые кожаные сапоги Как завязывать шарф на пальто: разные виды узлов Как завязать круговой шарф на пальто Как завязывать шарф на пальто: разные виды узлов Как завязать круговой шарф на пальто