Самый твердый минерал в природе. Алмаз — самый твердый минерал Какой камень крепче

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Современной науке геологии известны тысячи самых разнообразных минералов и горных пород. И уж кто-кто, а геологи точно знают, какой камень самый прочный в мире. А знаете ли вы ответ на этот вопрос? Если нет, обязательно прочитайте нашу статью.

Самый прочный камень - это…

Природой создано огромное количество различных минералов. Одни из них настолько мягкие, что крошатся в руках. А вот другие не деформируются даже от самого сильного удара. Какой камень самый прочный в природе? Давайте разбираться.

Если говорить исключительно о минералах, то ответ очевиден - это алмаз. Данное природное образование является одной из форм чистого углерода, которая образуется в недрах Земли на значительных глубинах. Минерал находится на вершине с абсолютной твердостью в 1600 единиц. Кроме того, алмаз обладает еще и таким качеством, как метастабильность (то есть, способностью существовать неограниченно долгий период времени при нормальных условиях среды).

Стоит отметить, что под словом «камень» может подразумеваться еще и такое понятие, как горная порода (агрегат из одного или нескольких видов минералов). Определить абсолютного рекордсмена по твердости среди горных пород не так просто. Чаще всего в список самых прочных камней попадают следующие породы:

  • Габбро.
  • Диабаз.
  • Гранит.

Минерал алмаз: основные свойства

Итак, самый дорогой, самый желанный, самый красивый и самый прочный камень на Земле - это алмаз. И с этим сложно поспорить. Впрочем, само название этого минерала более чем красноречиво. Слово «алмаз» в переводе с древнегреческого языка означает «несокрушимый».

Первые исторические свидетельства о прозрачном камне невиданной прочности пришли к нам из Древней Индии и Китая. При этом индусы называли его фарий. А вот китайцы еще в третьем тысячелетии до нашей эры применяли алмазы для шлифовки своих церемониальных топоров, изготовленных из корунда.

Какими же физико-механическими свойствами обладает самый прочный камень в мире? Давайте перечислим самые основные из них:

  • Блеск: алмазный.
  • Цвет черты: нет.
  • Твердость: 10 (по шкале Мооса).
  • Плотность: 3,47-3,55 г/см 3 .
  • Излом: раковистый до занозистого.
  • Сингония: кубическая.
  • Теплопроводность: 900-2300 Вт/(м·К) (очень высокая).

Наиболее распространенная окраска алмазов - желтая или бесцветная. Реже всего в природе встречаются минералы зеленого, синего, красного или черного цвета. Еще одно важное свойство всех алмазов - это способность к люминесценции. Под воздействие солнечного света они начинают светиться и переливаться различными цветами и оттенками.

  • Алмаз, графит и уголь - все эти вещества состоят из одного и того же элемента (углерода).
  • На некоторых планетах Солнечной системы идут алмазные дожди.
  • Алмаз нельзя назвать самым редким камнем на Земле. Существует как минимум десять драгоценных камней, которые встречаются в земной коре намного реже.
  • Штаб-квартира крупнейшей компании по добыче и обработке природных алмазов расположена в Йоханнесбурге (ЮАР).
  • При определенных условиях алмазы можно синтезировать из текилы или арахисового масла.
  • Луч света, проходящий сквозь тело данного минерала, снижает свою скорость в два раза.
  • 80% добываемых сегодня алмазов используется в промышленных целях.

Главные месторождения алмазов

Алмазы образуются на глубине 80-150 километров под воздействием колоссального давления и температуры. Затем благодаря вулканической деятельности они поднимаются ближе к поверхности нашей планеты, образуя при этом вертикальные месторождения - кимберлитовые трубки. Вот так, например, выглядит горловина такой трубки в Якутии (алмазный карьер «Мир»):

Помимо этого, некоторые алмазы могут иметь и метеоритное происхождение. Такие минералы образуются при контакте космического тела с поверхностью Земли. Так, «внеземные алмазы» были обнаружены в Большом Каньоне в США.

Так уж сложилось, что самые богатые залежи алмазов на Земле сосредоточены в недрах Африки. Именно здесь базируется крупнейшая по добыче ценного минерала компания в мире - De Beers. Алмазы сегодня активно добываются в ЮАР, Анголе, Ботсване, Намибии, Танзании, России, Канаде, Австралии. Лидером российской алмазной промышленности является компания "АЛРОСА".

Применение алмазов в промышленности

Не стоит думать, что алмазы используют исключительно в ювелирном деле. Самый твердый камень нашел широкое применение также в промышленности. В частности, из него производят сверхпрочные сверла, ножи, резцы и прочие изделия. (по сути, отходы, получаемые при обработке природных алмазов) применяется как абразив при производстве точильных дисков и кругов.

Используют алмазы также в ядерной энергетике и квантовой электронике. Еще одна крайне перспективная сфера в наши дни - микроэлектроника на алмазных подложках.

Гексагональный алмаз

Еще десять лет назад алмаз можно было считать на Земле. Но в 2009 году группа ученых из Китая и США сумела доказать ложность такого утверждения. По их убеждению, самым прочным веществом в мире является искусственный материал под названием лонсдейлит (или гексагональный алмаз).

При помощи метода компьютерного моделирования ученым удалось установить, что данный материал на 58% прочнее, нежели алмаз. И если последний разрушается при давлении в 97 гигапаскалей, то лонсдейлит способен выдерживать нагрузки в 152 гигапаскалей.

Однако гексагональный алмаз существует пока только лишь в теории. Впрочем, ученые сомневаются, что новый материал когда-либо будет применяться на практике. Ведь процесс его получения является чрезвычайно сложным и дорогостоящим.

СТРУКТУРА И СВОЙСТВА АЛМАЗА

Структура алмаза

Алмаз — это самый твердый минерал, не только на Земле, но и во Вселенной (10 единиц по десятибальной шкале Мооса). Он состоит углерода, который представляет собой плотнейшую упаковку атомов углерода. необычайно твёрдый, но в то же время хрупкий камень, который при резком и сильном ударе может расколоться на куски.

Структура графита

Кристаллы алмаза полностью прозрачны (если в них отсутствуют трещины), они могут быть не только бесцветными, но и желтыми, голубыми, зелеными, розовыми, коричневыми, серыми. Редко природные алмазы имеют черную окраску. Алмазы находят не только в виде единичных кристаллов, но также в виде сростков, шаровидных агрегатов, тонкозернистых агрегатов неправильной формы.

Специалисты-оценщики насчитывают 1000 природных ювелирных разновидностей алмазов.
Они учитывают цвет, прозрачность, трещиноватость, форму кристаллов, наличие включений и другие параметры сырья. Учитываются тончайшие изменения оттенков цвета камня и прозрачности, направление трещин, скопления включений и другие тонкие нюансы.

Ярко окрашенные алмазы всегда очень ценились как мастерами-ювелирами, так и покупателями камней. Крупные камни всегда детально описывались, они получали собственные имена. Их история тщательно описывалась.

Ограненный алмаз называется бриллиант . Существует специальная бриллиантовая форма огранки, хотя каждый камень гранится индивидуально, и мастер-огранщик смотрит по форме и цвету камня, какую огранку выбрать.

КАК ОБРАЗУЮТСЯ АЛМАЗЫ?

Как, при каких природных условиях углерод, который на поверхности Земли представлен одним из самых мягких минералов — графитом, мог сгруппироваться в плотнейшую структуру алмаза?

Теорий несколько, но самой достоверной считается теория, по которой алмазы сформировались в мантии Земли, на глубине около двухсот километров, и при давлении не менее 50 000 атмосфер. При этом в глубине молодой, формирующейся Земли, создавалось избыточное давление, газы и твердое вещество взрывообразно поступало на земную поверхность. В коренных породах, кимберлитах, алмазы находят в так называемых трубках взрыва . Это уникальные структуры диаметром к километр и более, овальной и округлой формы. Они заполнены голубоватым брекчированным кимберлитом (относится к ультраосновным породам) и уходят на глубину, возможно, на десятки, а, может быть, и сотни километров. Среди кимберлитов и находятся алмазы. Возраст таких алмазов очень велик — он составляет от ста миллионов лет до 2.5 миллиардов лет.

Если кимберлитовая трубка выходит на поверхность Земли, то она разрушается процессами выветривания пород. Алмазы вместе с породой перемещаются и оказываются на склонах гор в рыхлых породах и в реках, среди песка и гальки. Такие месторождения называются россыпями . Алмазы из них добывают так же, как и золото — методом промывания пород, вручную или с помощью несложного оборудования.

Если на Землю падают крупные метеориты, то скорость их, в атмосфере и при ударе, очень велика (все мы помним, с какой немыслимой скоростью пронесся Челябинский метеорит). При ударе о горные породы, состоящие из углерода (угли, углистые сланцы), также могут образовываться алмазы. Например, на севере Сибири (граница Красноярского края и Якутии) находится структура (большой кратер), образовавшийся при ударе метеорита — Попигайская астроблема . Диаметр кратера составляет около ста километров, событие произошло 36 миллионов лет назад (геологический период эоцен ). В пределах кратера находится крупное месторождение алмазов, образовавшихся в результате ударного воздействия метеорита на углеродсодержащие горные породы (импактные алмазы).

Месторождения алмазов не редки, они обнаруженны на всех земных континентах, за исключением Антарктиды. У нас в России наиболее известны месторождения Якутии (Трубка Мира) и Архангельской области. Промышленная добыча алмазов ведется в Южно-Африканской Республике, в Ботсване, в Канаде и в Анголе.

ЗНАМЕНИТЫЕ АЛМАЗЫ

Здесь мне хочется упомянуть только самые знаменитые алмазы, названия которых вошли в фильмы, книги, часто упоминаются и находятся на слуху. Вообще, крупных алмазов, найденных как в наше время, так в на протяжении последний двух тысячелетий, насчитывается несколько сотен. Среди них немало камней, овеянных мифами и легендами, имеющих собственные, часто кровавые и неприглядные истории, связанные с грабежами, убийствами и дворцовыми переворотами.

Куллинан — прозрачный бесцветный алмаз, был найден в 1905 году в Южно-Африканской республике. Он имел размер 50х65х110 миллиметров. Из этого камня изготовили 105 ограненных бриллиантов, в том числе бриллиант под названием Звезда Африки, который затем был вставлен в скипетр Великобритании (Британской Империи).

Алмаз Куллинан

Кохинур — прозрачный бесцветный алмаз, найденный в Индии приблизительно в восьмисотом году нашей эры. Алмаз имеет богатую историю, он много раз менял своих хозяев и переходил из рук в руки. Сейчас этот знаменитый бриллиант находится в Великобритании, его огранили и он вставлен в корону королевы Елизаветы.

Алмаз Кохинур в короне королевы Елизаветы

Алмаз Орлов — камень, хранящийся в Алмазном Фонде России. Этот бриллиант также имеет богатую историю, он был найден в 17 веке в Индии. В настоящее время вставлен в императорский скипетр Екатерины Второй.

Алмаз Орлов в скипетре

Великий Могол — этот крупный алмаз был найден в индии в 17 веке, также имеет длинную и богатую историю. Из него выточен бриллиант весом 279 карат.

Алмаз Великий Могол

АСТРОЛОГИЯ ОБ АЛМАЗАХ

Этот камень считается символом твердости духа, силы намерения, физических сил и духовной стойкости, чистоты, непогрешимости и несокрушимости. Украшения с алмазами могут носить представители всех знаков Зодиака, но особенно они хороши для Овна, Девы и Весов .

Что в неживой природе в большей степени восхищает и поражает людей, нежели самоцветы? Драгоценные камни удивительно красивы и редки, обладание ими делает человека мудрее и величественнее — во всяком случае, так уверяют многочисленные легенды и поверья, связанные с этими прекраснейшими из минералов. Но какой камень самый дорогой в мире? Узнаем мнение специалистов о стоимости самых дорогих камней.

10 Изумруд и сапфир

В среднем же хороший сапфир (около 6000 за карат) оказывается дороже не слишком качественного изумруда. Это, безусловно, относится к обычному, синему или голубому, сапфиру. Что же касается редчайшего оранжевого самоцвета (его называют падпараджа), то речь о нем впереди. Это, безусловно, один из самых дорогих камней в мире.

Что же до изумрудов – камней темно-зеленого или травянистого цвета – то, несмотря на их сравнительно большое количество, чистых экземпляров очень мало. Именно они ценятся столь высоко.

Можно отметить пару удивительных экземпляров. Во-первых, это Миллениум – сапфир в 61 тысячу карат, украшенный резьбой – 134 портретами виднейших мировых знаменитостей тысячелетия, среди которых, например, Бетховен, Шекспир и Эйнштейн. В данный момент его цена 180 миллионов долларов.

А крупнейший изумруд – баийский самородок, вес которого 1,9 млн карат, а цена — 400 млн долларов.

Это редчайший красный берилл, который добывают исключительно в штатах Юта и Нью-Мексико в США. Известно лишь несколько камней, из которых самый крупный весит немногим более 3 каратов.

Один карат стоит не менее 10, а то и 12 тысяч долларов. Это объясняется не только красотой, но и исключительной редкостью самоцвета.

Твердость камней определяется твердость по Моосу на царапанье и твёрдость по Розивалю. В наше время определяют твердость камней по шкале Мооса только коллекционеры и любители. Раньше когда оптика ещё не была сильно развита методом определения твёрдости на царапанье определяли подлинность драгоценных камней. Сейчас научились искусственно выращивать камни и поэтому метод Мооса определяет не очень точно. Придумал этот способ определение твёрдости Венский минералог Фридрих Моос. У этого метода есть недостаток можно повредить камень но зато есть и плюсы он не требует наличия дорогого оборудования и наличия лаборатории.
Принцип этого метода заключается в определение сопротивления камня на царапанье его поверхности острым специальным предметом. Камни имеющие твердость по Моосу выше 7 являются твёрдыми камнями, а камни с твёрдостью ниже 7 подвержены стиранию обычной пылью так как пыль содержит мельчайшие зёрна кварца которые имеют твёрдость по Моосу 7. Поэтому камни имеющие твёрдость по Моосу ниже 7 быстро тускнеют, у них быстро стирается полировка и сильно царапаются при контакте с более твёрдыми предметами. Производить твёрдость на царапанье нужно только острым краем образца только по ровным и свежим поверхностям камня, а если определять на ребристых образований или на выветренных с поверхности штуфов то значения твёрдости на царапанье будут получаться заниженными. Некоторые камни на разных гранях и на разных плоскостях могут иметь разную твёрдость царапанья. Например такие отличия имеет алмаз и благодаря этому его можно шлифовать хотя твердость алмаза по шкале Мооса считается самой высокой.
Ниже приведена относительная шкала твердости камней по Моосо в которой показано как можно поцарапать камень и какую твёрдость шлифования по Розивалю имеет камень в зависимости от твёрдости царапанья по Моосу.

Шкала Мооса таблица простого определения твёрдости

Определив твёрдость царапанья камня затем можно по специально созданной таблице определить соответствие камня.
Относительная таблица Мооса.

Камень Твёрдость по Моосу Камень Твёрдость по Моосу Камень Твёрдость по Моосу
Алмаз 10 Смарагдит 6,5 Томсонит 5-5,5
Рубин 9 Везувиан 6,5 Титанит 5-5,5
Сапфир 9 Силлиманит 6-7,5 Чпатит 5
Александрит 8,5 Касситерит 6-7 Аугелит 5
Хризоберилл 8,5 Эпидот 6-7 Диоптаз 5
Цейлонит 8 Гидденит 6-7 Гемиморфш 5
Родицит 8 Кунцит 6-6,5 Смитсонит 5
Шпинель 8 Амазонит 6-6,5 Страз 5
Таафеит 8 Авантюриновый полевой шпат 6-6,5 Вардит 5
Топаз 8 Бенитоит 6-6,5 Кианит 4.5 и 7
ИАГ-гранат (гранатит) 8 Ортоклаз 6-6.5 Апофиллит 4,5-5
Аквамарин 7,5-8 Эканит 6-6,5 Шеелит 4,5-5
Берилл 7,5-8 Фабулит 6-6.5 Цинкит 4,5-5
Ганит 7,5-8 Лабрадор 6-6,5 Колеманит 4,5
Пейнит 7,5-8 Лунный камень 6-6,5 Варисцит 4,5
Фенакит 7,5-8 Нефрит 6-6,5 Пурпурит 4,5
Изумруд 7,5-8 Петалит 6-6,5 Баритокальци т 4
Альмандин 7,5-8 Пренит 6-6,5 Флюорит 4-4,5
Андалузит 7,5 Пирит 6-6,5 Магнезит 4
Эвклаз 7,5 Рутил 6-6,5 Родохрозит 4
Гамбергит 7,5 Амблигонит 6 Доломит 3,5-4,5
Уваровит 7,5 Битовнит 6 Сидерит 3,5-4
Кордиерит 7-7,5 Санидин 6 Арагонит 3,5-4,5
Данбурит 7-7,5 Тугтупит 6 Азурит 3,5-4
Гроссуляр 7-7,5 Гематит 5,5-6,5 Куприт 3,5-4
Пироп 7-7,5 Опал 5,5-6,5 Халькопирит 3,5-4
Спессартин 7-7,5 Родонит 5,5-6,5 Малахит 3,5-4
Ставролит 7-7,5 Тремолит 5,5-6,5 Сфалерит 3,5-4
Турмалин 7-7,5 Актинолит 5,5-6 Церуссит 3,5
Аметист 7 Анатаз 5,5-6 Говлит 3,5
Авантюрин 7 Бериллонит 5.5-6 Витерит 3,5
Горный хрусталь 7 Элеолит 5,5-6 Кораллы 3-4
Цитрин 7 Гаюин 5,5-6 Жемчуг 3-4
Дюмортьерит 7 Периклаз 5,5-6 Ангидрит 3-3,5
Дымчатый кварц (раухтопаз) 7 Псиломелан 5.5-6 Барит 3
Розовый кварц 7 Содалит 5,5-6 Кальцит 3
Тигровый глаз 7 Бразилианит 5,5 Курнаковит 3
Циркон 6,5-7,5 Хромит 5,5 Вульфенит 3
Агат 6,5-7 Энстатит 5.5 Гагат 2,5-4
Аксинит 6.5-7 Лейцит 5.5 Крокоит 2,5-3
Халцедон 6,5-7 Молдавит 5.5 Гарниерит 2,5-3,5
Хлоромеланит 6,5-7 Натролит 5,5 Гейлюссит 2,5
Хризопраз 6,5-7 Виллемит 5.5 Прустит 2,5
Демантоид 6,5-7 Скаполит 5-6,5 Серпентин 2,5
Окаменелое дерево 6.5-7 Канкринит 5-6 Хризоколла 2-2,5
Жадеит 6,5-7 Диопсид 5-6 Слоновая кость 2-4
Яшма 6-7 Г иперстен 5-6 Янтарь 2-3
Корнерупин 6,5-7 Ильменит 5-6 Морская пенка (сепиолит) 2-2,5
Перидот(хризолит) 6,5-7 Лазурит 5-6 Алебастр 2-2,5
Танзанит 6,5-7 Лазулит 5-6 Улексит 2
Г аллиант 6,5 Танталит 5-6 Вивианит 1,5-3
Перистерит 6,5 Бирюза 5-6 Стихтит 1,5-2,5
Соссюрит 6,5 Датолит 5-5.5 Сера 1,5-2
Сингалит 6,5 Обсидиан 5-5,5

В этой таблице каждый экземпляр в шкале Мооса имеет свою твёрдость.

Окружающий нас мир таит в себе еще множество загадок, но даже давно известные ученым явления и вещества не перестают удивлять и восторгать. Мы любуемся яркими красками, наслаждаемся вкусами и используем свойства всевозможных веществ, делающих нашу жизнь комфортнее, безопаснее и приятнее. В поисках самых надежных и крепких материалов человек совершил немало восторгающих открытий, и перед вами подборка как раз из 25 таких уникальных соединений!

25. Алмазы

Об этом точно знают если не все, то почти все. Алмазы – это не только одни из самых почитаемых драгоценных камней, но и один из самых твердых минералов на Земле. По шкале Мооса (шкала твёрдости, в которой оценка дается по реакции минерала на царапание) алмаз числится на 10 строчке. Всего в шкале 10 позиций, и 10-ая – последняя и самая твердая степень. Алмазы такие твердые, что поцарапать их можно разве что другими алмазами.

24. Ловчие сети паука вида Caerostris darwini


Фото: pixabay

В это сложно поверить, но сеть паука Caerostris darwini (или паук Дарвина) крепче стали и тверже кевлара. Эту паутину признали самым твердым биологическим материалом в мире, хотя сейчас у нее уже появился потенциальный конкурент, но данные еще не подтверждены. Паучье волокно проверили на такие характеристики, как разрушающая деформация, ударная вязкость, предел прочности и модуль Юнга (свойство материала сопротивляться растяжению, сжатию при упругой деформации), и по всем этим показателям паутина проявила себя удивительнейшим образом. Вдобавок ловчая сеть паука Дарвина невероятно легкая. Например, если волокном Caerostris darwini обернуть нашу планету, вес такой длинной нити составит всего 500 граммов. Таких длинных сетей не существует, но теоретические подсчеты просто поражают!

23. Аэрографит


Фото: BrokenSphere

Эта синтетическая пена – один из самых легких волокнистых материалов в мире, и она представляет собой сеть углеродных трубочек диаметром всего в несколько микронов. Аэрографит в 75 раз легче пенопласта, но при этом намного прочнее и пластичнее. Его можно сжать до размеров, в 30 раз меньших первоначального вида, без какого-либо вреда для его чрезвычайно эластичной структуры. Благодаря этому свойству аэрографитная пена может выдержать нагрузку, в 40 000 раз превышающую ее собственный вес.

22. Палладиевое металлическое стекло


Фото: pixabay

Команда ученых их Калифорнийского технического института и Лаборатории Беркли (California Institute of Technology, Berkeley Lab) разработала новый вид металлического стекла, совместивший в себе практически идеальную комбинацию прочности и пластичности. Причина уникальности нового материала кроется в том, что его химическая структура успешно скрадывает хрупкость существующих стеклообразных материалов и при этом сохраняет высокий порог выносливости, что в итоге значительно увеличивает усталостную прочность этой синтетической структуры.

21. Карбид вольфрама


Фото: pixabay

Карбид вольфрама – это невероятно твердый материал, обладающий высокой износостойкостью. В определенных условиях это соединение считается очень хрупким, но под большой нагрузкой оно показывает уникальные пластические свойства, проявляющиеся в виде полос скольжения. Благодаря всем этим качествам карбид вольфрама используется в изготовлении бронебойных наконечников и различного оборудования, включая всевозможные резцы, абразивные диски, свёрла, фрезы, долота для бурения и другие режущие инструменты.

20. Карбид кремния


Фото: Tiia Monto

Карбид кремния – один из основных материалов, используемых для производства боевых танков. Это соединение известно своей низкой стоимостью, выдающейся тугоплавкостью и высокой твердостью, и поэтому оно часто используется в изготовлении оборудования или снаряжения, которое должно отражать пули, разрезать или шлифовать другие прочные материалы. Из карбида кремния получаются отличные абразивы, полупроводники и даже вставки в ювелирные украшения, имитирующие алмазы.

19. Кубический нитрид бора


Фото: wikimedia commons

Кубический нитрид бора – это сверхтвердый материал, по своей твердости схожий с алмазом, но обладающий и рядом отличительных преимуществ – высокой температурной устойчивости и химической стойкости. Кубический нитрид бора не растворяется в железе и никеле даже под воздействием высоких температур, в то время как алмаз в таких же условиях вступает в химические реакции достаточно быстро. На деле это выгодно для его использования в промышленных шлифовальных инструментах.

18. Сверхвысокомолекулярный полиэтилен высокой плотности (СВМПЭ), марка волокон «Дайнима» (Dyneema)


Фото: Justsail

Полиэтилен с высоким модулем упругости обладает чрезвычайно высокой износостойкостью, низким коэффициентом трения и высокой вязкостью разрушения (низкотемпературная надёжность). Сегодня его считают самым прочным волокнистым веществом в мире. Самое удивительное в этом полиэтилене то, что он легче воды и одновременно может останавливать пули! Тросы и канаты из волокон Дайнима не тонут в воде, не нуждаются в смазке и не меняют свои свойства при намокании, что очень актуально для судостроения.

17. Титановые сплавы


Фото: Alchemist-hp (pse-mendelejew.de)

Титановые сплавы невероятно пластичные и демонстрируют удивительную прочность во время растяжения. Вдобавок они обладают высокой жаропрочностью и коррозионной стойкостью, что делает их крайне полезными в таких областях, как авиастроение, ракетостроение, судостроение, химическое, пищевое и транспортное машиностроение.

16. Сплав Liquidmetal


Фото: pixabay

Разработанный в 2003 году в Калифорнийском техническом институте (California Institute of Technology), этот материал славится своей силой и прочностью. Название соединения ассоциируется с чем-то хрупким и жидким, но при комнатной температуре оно на самом деле необычайно твердое, износостойкое, не боится коррозии и при нагревании трансформируется, как термопласты. Основными сферами применения пока что являются изготовление часов, клюшек для гольфа и покрытий для мобильных телефонов (Vertu, iPhone).

15. Наноцеллюлоза


Фото: pixabay

Наноцеллюлозу выделяют из древесного волокна, и она представляет собой новый вид деревянного материала, который прочнее даже стали! Вдобавок наноцеллюлоза еще и дешевле. Инновация имеет большой потенциал и в будущем может составить серьезную конкуренцию стеклу и углеволокну. Разработчики считают, что этот материал вскоре будет пользоваться большим спросом в производстве армейской брони, супергибких экранов, фильтров, гибких батареек, абсорбирующих аэрогелей и биотоплива.

14. Зубы улиток вида «морское блюдечко»


Фото: pixabay

Ранее мы уже рассказали вам о ловчей сети паука Дарвина, которую некогда признали самым прочным биологическим материалом на планете. Однако недавнее исследование показало, что именно морского блюдечка – наиболее прочная из известных науке биологических субстанций. Да-да, эти зубки прочнее паутины Caerostris darwini. И это неудивительно, ведь крошечные морские создания питаются водорослями, растущими на поверхности суровых скал, и чтобы отделить пищу от горной породы, этим зверькам приходится потрудиться. Ученые полагают, что в будущем мы сможем использовать пример волокнистой структуры зубов морских блюдечек в машиностроительной промышленности и начнем строить автомобили, лодки и даже воздушные суда повышенной прочности, вдохновившись примером простых улиток.

13. Мартенситно-стареющая сталь


Фото: pixabay

Мартенситно-стареющая сталь – это высокопрочный и высоколегированный сплав, обладающий превосходной пластичностью и вязкостью. Материал широко распространен в ракетостроении и используется для изготовления всевозможных инструментов.

12. Осмий


Фото: Periodictableru / www.periodictable.ru

Осмий – невероятно плотный элемент, и благодаря своей твердости и высокой температуре плавления он с трудом поддается механической обработке. Именно поэтому осмий используют там, где долговечность и прочность ценятся больше всего. Сплавы с осмием встречаются в электрических контактах, ракетостроении, военных снарядах, хирургических имплантатах и применяются еще во многих других областях.

11. Кевлар


Фото: wikimedia commons

Кевлар – это высокопрочное волокно, которое можно встретить в автомобильных шинах, тормозных колодках, кабелях, протезно-ортопедических изделиях, бронежилетах, тканях защитной одежды, судостроении и в деталях беспилотных летательных аппаратов. Материал стал практически синонимом прочности и представляет собой вид пластика с невероятно высокой прочностью и эластичностью. Предел прочности кевлара в 8 раз выше, чем у стального провода, а плавиться он начинает при температуре в 450℃.

10. Сверхвысокомолекулярный полиэтилен высокой плотности, марка волокон «Спектра» (Spectra)


Фото: Tomas Castelazo, www.tomascastelazo.com / Wikimedia Commons

СВМПЭ – это по сути очень прочный пластик. Спектра, марка СВМПЭ, – это в свою очередь легкое волокно высочайшей износостойкости, в 10 раз превосходящее по этому показателю сталь. Как и кевлар, спектра используется в изготовлении бронежилетов и защитных шлемов. Наряду с СВМПЭ марки дайнимо спектра популярна в судостроении и транспортной промышленности.

9. Графен


Фото: pixabay

Графен – это аллотропная модификация углерода, и его кристаллическая решетка толщиной всего в один атом настолько прочная, что она в 200 раз тверже стали. Графен с виду похож на пищевую пленку, но порвать его – практически непосильная задача. Чтобы пробить графеновый лист насквозь, вам придется воткнуть в него карандаш, на котором должен будет балансировать груз весом с целый школьный автобус. Удачи!

8. Бумага из углеродных нанотрубок


Фото: pixabay

Благодаря нанотехнологиям ученым удалось сделать бумагу, которая в 50 тысяч раз тоньше человеческого волоса. Листы из углеродных нанотрубок в 10 раз легче стали, но удивительнее всего то, что по прочности они превосходят в целых 500 раз! Макроскопические пластины из нанотрубок наиболее перспективны для изготовления электродов суперконденсаторов.

7. Металлическая микрорешетка


Фото: pixabay

Перед вами самый легкий в мире металл! Металлическая микрорешетка – это синтетический пористый материал, который в 100 раз легче пенопласта. Но пусть его внешний вид не вводит вас в заблуждение, ведь эти микрорешетки заодно и невероятно прочные, благодаря чему они обладают большим потенциалом для использования во всевозможных инженерных областях. Из них можно изготавливать превосходные амортизаторы и тепловые изоляторы, а удивительная способность этого металла сжиматься и возвращаться в своё первоначальное состояние позволяет использовать его для накопления энергии. Металлические микрорешетки также активно применяются в производстве различных деталей для летательных аппаратов американской компании Boeing.

6. Углеродные нанотрубки


Фото: User Mstroeck / en.wikipedia

Выше мы уже рассказывали про сверхпрочные макроскопические пластины из углеродных нанотрубок. Но что же это за материал такой? По сути это свернутые в трубку графеновые плоскости (9-ый пункт). В результате получается невероятно легкий, упругий и прочный материал широкого спектра применения.

5. Аэрографен


Фото: wikimedia commons

Известный также как графеновый аэрогель, этот материал чрезвычайно легкий и прочный одновременно. В новом виде геля жидкая фаза полностью заменена на газообразную, и он отличается сенсационной твердостью, жаропрочностью, низкой плотностью и низкой теплопроводностью. Невероятно, но графеновый аэрогель в 7 раз легче воздуха! Уникальное соединение способно восстанавливать свою изначальную форму даже после 90% сжатия и может впитывать такое количество масла, которое в 900 раз превышает вес используемого для абсорбции аэрографена. Возможно, в будущем этот класс материалов поможет в борьбе с такими экологическими катастрофами, как разливы нефти.

4. Материал без названия, разработка Массачусетского технологического института (MIT)


Фото: pixabay

Пока вы читаете эти строки, команда ученых из MIT работает над усовершенствованием свойств графена. Исследователи заявили, что им уже удалось преобразовать двумерную структуру этого материала в трехмерную. Новая графеновая субстанция еще не получила своего названия, но уже известно, что ее плотность в 20 раз меньше, чем у стали, а ее прочность в 10 раз выше аналогичной характеристики стали.

3. Карбин


Фото: Smokefoot

Хоть это и всего лишь линейные цепочки атомов углерода, карбин обладает в 2 раза более высоким пределом прочности, чем графен, и он в 3 раза жестче алмаза!

2. Нитрид бора вюрцитной модификации


Фото: pixabay

Это недавно открытое природное вещество формируется во время вулканических извержений, и оно на 18% тверже алмазов. Впрочем, алмазы оно превосходит еще по целому ряду других параметров. Вюрцитный нитрид бора – одна из всего 2 натуральных субстанций, обнаруженных на Земле, которая тверже алмаза. Проблема в том, что таких нитридов в природе очень мало, и поэтому их непросто изучать или применять на практике.

1. Лонсдейлит


Фото: pixabay

Известный также как алмаз гексагональный, лонсдейлит состоит из атомов углерода, но в случае данной модификации атомы располагаются несколько иначе. Как и вюрцитный нитрид бора, лонсдейлит – превосходящая по твердости алмаз природная субстанция. Причем этот удивительный минерал тверже алмаза на целых 58%! Подобно нитриду бора вюрцитной модификации, это соединение встречается крайне редко. Иногда лонсдейлит образуется во время столкновения с Землей метеоритов, в состав которых входит графит.

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Фрисолак описание и состав Фрисолак описание и состав Коричневые кожаные сапоги Коричневые кожаные сапоги Как завязывать шарф на пальто: разные виды узлов Как завязать круговой шарф на пальто Как завязывать шарф на пальто: разные виды узлов Как завязать круговой шарф на пальто