Отличие алмаза от графита. Графит и алмаз, химический состав и химические свойства. Превращение - графита или угля в алмаз

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Для прямого перехода графита в алмаз необходимы еще более экстремальные условия по сравнению с методикой, использующей металл-растворитель. Это связано с большой устойчивостью графита обусловленной очень прочными связями его атомов.

Результаты первых эскспериментов по прямому превращению графит—алмаз, выполненных П. Де-Карлн и Дж. Джеймисоном из «Аллайд кемикл Корпорэйпш», были опубликованы в 1961 г.

Для создания давления использовалось взрывчатое вещество большой мощности, с помощью которого в течение примерно миллионной доли секунды (одной -" микросекунды) поддерживалась температура около 1200° С и давление порядка 300000 атм. В этих условиях в образце графита после опыта обнаруживалось некоторое количество алмаза, правда в виде очень мелких частичек. Полученные кристаллиты по размерам (100 А=10 нм, или одна стотысячная доля миллиметра) сопоставимы с «карбонадо», встречающимся в метеоритах, образование которых объясняется воздействием мощной ударной волны, возникающей при ударе метеорита о земную поверхность.

В 1963 г. Фрэнсису Банди из «Дженерал электрик» удалось осуществить прямое превращение графита в алмаз при статическом Давлении, превышающем 130 000 атм . Такие давления были получены на модифицированной установке «белт» с большей внешней поверхностью поршней и меньшим рабочим объемом. Для создания таких давлений потребовалось увеличение прочности силовых деталей Установки.

Эксперименты включали искровой нагрев бруска графита до температур выше 2000° С. Нагревание осуществлялось импульсами электрического тока, а температура, необходимая для образования алмаза, сохранялась в течение нескольких миллисекунд (тысячных Долей секунды), т. е. существенно дольше, чем в экспериментах Де-Карли и Джеймисона.

Размеры новообразованных частиц были в 2—5 раз больше по сравнению с получающимися при ударном сжатии. Обе серии экспериментов дали необходимые параметры для построения фазовой диаграммы углерода, графически показывающей области температур и давлений, при которых стабильны алмаз, графит и расплав.I

Интересные эксперименты были проведены Банди и Дж. Каспером, которые использовали монокристаллы графита вместо ттоликрн-сталлического материала. Кристаллы алмаза в их первых опытах имели обычную кубическую кристаллическую структуру.

Еще Де-Карли и Джеймисон обратили внимание на то, что превращение в алмаз происходит легче, когда частички графита в образцах имеют удлинение вдоль так называемой оси с, т. е. перпендикулярно гексагональным слоям. Когда Банди и Каспер поместили монокристаллы таким образом, что давление прикладывалось вдоль оси с, и измерили электросопротивление кристаллов под давлением, то оказалось, что сопротивление увеличивается, когда достигается давление в 140 000 атм.

Это связывали с переходом графита в алмаз, хотя при снятии давления происходило обратное превращение в графит. Однако, когда эта процедура сопровождалась нагревом образца до 900 "С и выше, образовывались кристаллиты новой фазы высокого давления, имеющие гексагональную структуру, а не обычную — кубическую.

Гексагональный углерод также изредка находили в природных образцах, особенно в метеоритах. Он получил название лонсдеплит в честь Кэтлин Лонсдеил из Лондонского университета за ее большие заслуги в области кристаллографии, в частности в изучении алмаза.

В 1968 г. Г. Р. Коуэну. Б. В, Даннингтону и А. X. Хольцману нз компании «Дюпон де Немюр» был выдан патент на новый процесс, заключающийся в ударном сжатии металлических блоков, например железных отливок, содержащих небольшие включения графита (при давлениях, превышающих 1 млн. атм.)

Металл, у которого сжимаемость меньше, чем у графита, выполняет функции холодильника, очевь быстро охлаждающего включения.

Это предотвращает обратный переход алмаза, образовавшегося под действием ударной волны, в графит после прохождения этой волны—тенденции, характерной для экспериментов с монокристаллами при холодном сжатии. Конечный продукт, получаемый при использовании этой технологии, частично представлен гексагональным углеродом, что также подтверждает тенденцию к образованию лонсдейлита в условиях очень высоких давлений и относительно низких температур. Изготовленный таким способом материал используется в качестве шлифовального порошка.

Время от времени сообщается об исследованиях, направленных на модификацию того или иного из этих методов. Так, Л. Труеб применил принцип Де-Карли — Джеймисона для создания давления в 250 000—450 000 атм в течение 10—30 мкс, сопровождаемого разогревом после удара до 1100°С. Использовался графит в виде частичек диаметром 0,5—5 мкм, и получаемые алмазы имели те же размеры.

Однако установлено, что эти частички образованы очень мелкими (от Ю—40 до 100—1600 А) кубическими алмазами. В настоящее время нет сведений о том, что продукция «Аллайд кемикл корпорэйшн» поступает в коммерческую торговлю.

Способ, разработанный этой компанией, чтобы он мог успешно конкурировать с методом, использующим растноритель, и методом компании «Дюпон де Немюр», нуждается в дальнейшем совершенствовании. Потенциальное преимущество методов ударного сжатия в том, что взрыв—дешевый путь создания высоких давлений.

А чем графит отличается от алмаза?

И алмаз, и графит являются модификациями углерода.

Алмаз:

Графит:


Однако различий очень много:

1. Алмаз - самое твердое из известных веществ (10 по шкале Мооса), графит - одно из самых мягких (1-2).

2. Алмаз - кристаллическая кубическая полиморфная модификация самородного углерода.
плотность около 3,5 г/куб.см, высокий показатель преломления среди драгоценных камней (2,417). полупроводник. крупные прозрачные кристаллы алмаза — драгоценные камни первого класса.

Графит - наиболее распространенная и устойчивая в земной коре полиморфная гексагональная модификация углерода. структура слоистая. плотность ок. 2,2 г/см3. огнеупорен, электропроводен, химически стоек.

3. Разница видна и при анализе создания искусственных алиазов: технология производства искусственных алмазов довольно сложна. синтезируют алмазы при температуре 1200-2000°С и давлении 1000-5000 МПа (50-60 тысяч атмосфер) из порошка графита, смешанного с порошкообразным железом, никелем, хромом. Кристаллизуются алмазы за счет того, что расплав при высоких давлениях не досыщен по отношению к графиту и пересыщен — по отношению к алмазам.

Кстати, графит тоже можно получить искусственным путем: нагревание антрацита без доступа воздуха.

4. Алмазы обычно люминесцируют в рентгеновских и ультрафиолетовых лучах. алмазы прозрачны для рентгеновских лучей. это облегчает идентификацию алмаза: некоторые стекла и бесцветные минералы, подчас внешне похожие на него, непрозрачны для рентгеновских лучей той же длины волны и интенсивности.

5. Насчет кристаллической решетки:


Разница видна невооруженным взглядом. Решетка алмаза очень прочная: атомы углерода находятся в ней по узлам двух кубических решеток с центрированными гранями, очень плотно вставленных одна в другую (а = 3,5595 А).

Насчет графита: связь между атомами прочная, ковалентного типа; между слоями - слабая, остаточно-металлического типа.

Алмаз, графит и уголь - состоят из однородных атомов графита, но имеют различные кристаллические решетки.

Краткая характеристика: алмаз, графит и уголь

Кристаллические решетки графита не имеют прочных связей, они представляют собой отдельные чешуйки и как бы скользят друг по другу, легко отделяясь от общей массы. Графит часто используют в качестве смазки для трущихся поверхностей.

Уголь состоит из мельчайших частиц графита и таких же малых частиц углерода, находящегося в соединении с водородом, кислородом, азотом.

Кристаллическая решетка алмаза жесткая, компактная, обладает высокой твердостью.

Тысячелетиями люди даже не подозревали, что эти три вещества имеют что-то общее. Все это - открытия более позднего времени.

Никаких признаков их родства не давала и природа. Месторождения угля никогда не соседствовали с графитом. В их залежах никогда геологи не обнаруживали сверкающих кристаллов алмаза.

Но время не стоит на месте. В конце XVII века флорентийским ученым удалось сжечь алмаз. После этого не осталось даже крохотной кучки золы. Английский химик Теннант через 100 лет после этого установил, что при сжигании одинаковых количеств графита, угля, и алмаза образуется одинаковое количество углекислого газа. Этот опыт открыл истину.

Взаимопревращения алмаза, графита и угля

Сразу же ученых заинтересовал вопрос: а возможно ли превращение одной аллотропической формы углерода в другую? И ответы на эти вопросы были найдены.
Оказалось, что алмаз полностью переходит в графит , если его нагреть в безвоздушном пространстве до температуры 1800 градусов.

Если через уголь пропускают электрический ток в специальной печи, то он превращается в графит при температуре 3500 градусов.

Превращение - графита или угля в алмаз

Труднее далось людям третье превращение - графита или угля в алмаз . Почти сто лет пытались осуществить его ученые.

Получить из графита алмаз

Первым был, видимо, шотландский ученый Генней . В 1880 году он начал серию своих опытов. Он знал, что плотность графита - 2,5 грамма на кубический сантиметр, а алмаза - 3,5 грамма на кубический сантиметр. Значит, надо уплотнить укладку атомов и получить из графита алмаз , решил он.

Он брал прочный стальной орудийный ствол, наполнял его смесью углеводородов, прочно закрывал оба отверстия и накаливал до красного каления. В раскаленных трубах возникало гигантское, по понятиям того времени, давление.

Не раз оно разрывало сверхпрочные орудийные стволы, как авиационные бомбы. Но все-таки некоторые выдержали весь цикл нагреваний. Когда они остыли, Генней нашел в них несколько темных, очень прочных кристаллов.

Я получил искусственные алмазы,

Решил Генней.


Способ получения искусственных алмазов

Через 10 лет после Геннея французский ученый Анри Муассон подверг стремительному охлаждению насыщенный углеродом чугун. Мгновенно застывшая поверхностная корка его, при остывании уменьшаясь в размерах, подвергала внутренние слои чудовищному давлению.

Когда затем Муассон растворял в кислотах чугунные ядрышки, он находил в них крохотные непрозрачные кристаллики.

Я нашел еще один способ получения искусственных алмазов !

Решил изобретатель.

Проблема искусственных алмазов

Спустя еще 30 лет, проблемой искусственных алмазов стал заниматься английский ученый Парсонс . В его распоряжении были гигантские прессы принадлежавших ему заводов. Он стрелял из пушки прямо в дуло другого оружия, но алмазов ему получить не удалось.

Впрочем, уже во многих развитых странах мира лежали в музеях искусственные алмазы разных изобретателей. И было выдано не мало патентов на их получение. Но в 1943 году английские физики подвергли скрупулезной проверке полученные искусственным путем алмазы.

И оказалось, что все они не имеют ничего общего с настоящими алмазами, кроме только алмазов Геннея. Они оказались настоящими. Это сразу же стало загадкой, остается загадкой и сегодня.

Превращение графита в алмаз

Наступление продолжалось. Во главе его встал лауреат Нобелевской премии американский физик Перси Бриджмен . Почти полвека занимался он усовершенствованием техники сверхвысоких давлений.

И в 1940 году, когда в его распоряжении оказались прессы, могущие создавать давление до 450 тысяч атмосфер, он начал опыты по превращению графита в алмаз .

Но осуществить это превращение он не смог. Графит, подвергнутый чудовищному давлению, остался графитом. Бриджмен понимал, чего не хватает его установке: высокой температуры.

Видимо, в подземных лабораториях, где создавались алмазы, играла роль и высокая температура. Он изменил направление опытов. Ему удалось обеспечить нагрев графита до 3 тысяч градусов и давление до 30 тысяч атмосфер. Это было уже почти то, что, как мы знаем теперь, необходимо для алмазного превращения.

Но и недостающее «почти» не позволило Бриджмену достичь успеха. Честь создания искусственных алмазов досталась не ему.

Первые искусственные алмазы

Первые искусственные алмазы были получены английскими учеными Бэнди, Холлом, Стронгом и Вентроппом в 1955 году. Они создавали давление в 100 тысяч атмосфер и температуру в 5000 градусов.

В графит добавляли катализаторы - железо, ром, марганец и т. д. И на границе графита и катализаторов возникли желто-серые непрозрачные кристаллы технических искусственных алмазов. Что ж, алмаз идет не только на брилианты, он используется и на заводах, и на фабриках.

Впрочем, несколько позже американские ученые нашли способ получать и прозрачные кристаллы алмаза. Для этого грант подвергают давлению в 200 тысяч атмосфер, а затем электрическим разрядом нагреванию до температуры 5 тысяч градусов.

Кратковременность разряда - он длится тысячные доли секунды - оставляет установку холодной, и алмазы получаются чистыми и прозрачными.

Создание искусственных алмазов

Советские ученые пришли к созданию искусственных алмазов своим путем. Советский физик О.И. Лейпунский провел теоретические исследования и заранее установил те температуры и давления, при которых возможно алмазное превращение графита.

Цифры эти в те годы - это было в 1939 году - показались удивительными, стоящими за границами достижимого для современной техники: давление не менее 50 тысяч атмосфер и температура 2 тысячи градусов. И все-таки, за стадией теоретических расчетов пришла пора создания опытных конструкций, а затем и промышленных установок. И сегодня работают многочисленные устройства, выпускающие искусственные алмазы и другие, еще более твердые вещества. Высшее достижение природы в твердости материала не только достигнуто, но уже и перекрыто.

Такова история открытия третьего превращения углерода, самого важного для современной техники.

Как алмаз возник в природе

Но что осталось самого удивительного в алмазном превращении углерода? То, что ученые до сих пор не понимают, как алмаз возник в природе !

Известно, что единственным коренным месторождением алмазов являются кимберлитовые трубки . Это глубокие цилиндрические колодцы диаметром в несколько сот метров, заполненные синей глиной - кимберлитом, с которой вместе и были вынесены на поверхность земли драгоценные камни.


Гипотеза глубинного рождения алмазов

Наиболее ранней была гипотеза глубинного рождения алмазов . Согласно этой гипотезе, сверкающие кристаллы выделились из расплавленной магмы на глубине около 100 километров, а затем вместе с магмой по трещинам и разломам медленно поднимались к поверхности.

Ну а с глубины в 2-3 километра магма прорывала и вырывалась на поверхность, образуя кимберлитовую трубку.

Взрывная гипотеза

На смену этой гипотезе пришла другая, вероятно, ее следует назвать взрывной гипотезой . Ее выдвинули Л. И. Леонтьев, А. А. Кадемекий, В. С. Трофимов . По их мнению, алмазы возникают на глубине всего 4-6 километров от земной поверхности.

А требующееся для возникновения алмазов давление создается взрывом, вызванным некоторыми взрывчатыми веществами, проникшими в занимаемые магмой полости из окружающих осадочных пород. Это могут быть нефть, битумы, горючие газы. Авторы гипотезы предложили несколько вариантов химических реакций, в результате которых образуются взрывчатые смеси и возникает свободный углерод.

Эта гипотеза объясняла и высокую температуру, требующуюся для алмазного превращения, и гигантское давление. Но не все особенности кимберлитовых трубок она объясняла. Очень легко было доказать, что породы кимберлитовой трубки образовались при давлении, не превышающем 20 тысяч атмосфер, но невозможно доказать, что они возникли при более высоком давлении.

Сегодня геофизики достаточно точно установили, для каких пород требуются те или иные давления и температуры образования. Скажем, постоянный спутник алмаза - минерал пироп - требует 20 тысяч атмосфер, алмаз - 50 тысяч. Большее, чем для пиропа, и меньшее, чем для алмаза, давление требуют коэсит, стишовит, пьезолит.

Но ни этих, ни других пород, требующих для своего образования столь высоких давлений, в кимберлите нет. Единственное исключение здесь - алмаз. Почему это так? Ответить на этот вопрос решил доктор геолого-минералогических наук Э. М. Галымов .

Почему, спросил он себя, давление в 50 тысяч атмосфер должно быть обязательно свойственно всей массе магмы, в которой творятся алмазы? Ведь магма - поток. В ней возможны и вихри, и быстрины, и гидравлические удары, и пузырьки возникающей местами кавитации.

Гипотеза рождения алмаза в режиме кавитации

Да, именно кавитация ! Это удивительно неприятное явление, несущее не мало бед гидравликам! Кавитация может возникнуть на лопастях гидравлической турбины, если она хоть чуть-чуть вышла за границы рассчитанного режима. Такая же беда может постичь и лопасти гидравлического , перешедшего на форсированный режим.

Кавитация может разрушить и лопасти пароходного винта, словно бы надорвавшегося в борьбе за скорость. Она губит, разрушает, разъедает. Да, это точнее всего: разъедает! Сверхпрочные стали, блиставшие зеркальной полировкой поверхностей, превращаются в рыхлую пористую губку.

Словно тысячи крохотных беспощадных и жадных ртов рвали по крохам металл в том месте, где его изгрызла кавитация. Да еще ртов, которым «по зубам» легированный металл, от которого отскакивает напильник! Не мало аварий турбин и насосов, гибели пароходов и теплоходов произошло из-за наличия кавитации. И ста лет не прошло, как разобрались, что же это такое - кавитация.

А действительно, что же это такое? Представим поток жидкости, движущейся в трубе переменного сечения. Местами, в сужениях, скорость течения растет, местами, там, где поток расширяется, скорость течения падает. Одновременно, но по обратному закону изменяется давление внутри жидкости: там, где вырастает скорость, резко падает давление, а там, где скорость уменьшается - давление растет.

Этот закон обязателен для всех движущихся жидкостей. Можно представить, что при некоторых скоростях давление падает до той величины, при которой жидкость закипает, и в ней возникают пузырьки пара. Со стороны кажется, что жидкость в месте кавитации начала кипеть, ее заполняет белая масса крохотных пузырьков, она становится непрозрачной.

Вот эти-то пузырьки и являются главной бедой при кавитации. Как рождаются и как умирают кавитационные пузырьки, еще недостаточно изучено. Неизвестно, заряжены ли внутренние их поверхности. Неизвестно, как ведет себя вещество паров жидкости в пузырьке. А Галымову было поначалу неизвестно, могут ли вообще возникнуть кавитационные пузырьки в магме, заполняющей кимберлитовую трубку.

Ученый произвел расчеты. Оказалось, что кавитация возможна при скоростях течения магмы, превышающих 300 метров в секунду. Такие скорости легко получить для воды, но может ли течь с такой же скоростью тяжелая, густая, вязкая магма? Снова расчеты, расчеты и долгожданный ответ: да, может! Для нее возможны скорости и в 500 метров в секунду.

Дальнейшие расчеты должны были выяснить, будут ли достигаться в пузырьках требующиеся величины температуры и давления - 50 тысяч атмосфер давления и 1500 градусов температуры. И эти расчеты дали положительные результаты.

Средняя величина давления в пузырьке в момент охлопывания достигала миллиона атмосфер! А максимальное давление может быть в десять раз больше. Температура же в этом пузырьке имеет величину в 10 тысяч градусов. Что и говорить, условия далеко перешагнули через предельные для алмазного превращения.

Скажем сразу, условия, которые создает кавитационный пузырек для зарождения алмаза, очень своеобразны. Помимо температур и давлений, по временам возникающих в крохотных объемах этих пузырьков, там проносятся ударные волны, сверкают удары молний - вспыхивают электрические искры.

Звуки вырываются за пределы узкого участка жидкости, охваченного кавитацией. Соединяясь, они воспринимаются как своеобразное гудение, подобное тому, которое доносится из закипающего чайника. Но именно такие условия являются идеальными для зарождающегося алмазного кристалла. Поистине, его рождение происходит в грозе и молниях.

Можно упрощенно и опуская многие детали представить происходящее внутри кавитационного пузырька. Вот повысилось давление жидкости, и кавитационный пузырь начинает исчезать. Двинулись к центру его стенки, и от них сразу же отрываются ударные волны. Они движутся в ту же сторону к центру.

Не надо забывать об их особенностях. Во-первых, они движутся со сверхзвуковой скоростью, во-вторых, за ним остается крайне возбужденный газ, у которого резко поднялись и давление, и температура.

Да, это та же самая ударная волна, что движется по куску горящего тола и превращает мирно горение в яростный, всесокрушительный взрыв. В центре пузырька ударные волны, бегущие с разных сторон, сходятся. При этом плотность вещества в этой точке схождения превосходит плотность алмаза.

Трудно сказать, какую форму там приобретает вещество, но оно начинает расширяться. При этом ему приходится преодолевать противодавление, измеряемое миллионами атмосфер. За счет этого расширения оказавшееся в центре пузырька вещество охлаждается с десятков тысяч градусов всего до тысячи градусов.

Бакаева Анастасия

Всё началось с простого карандаша! А вернее с его стержня. На уроке физики мы проходили тему «Строение твёрдых, жидких и газообразных тел», и оказалось, что углерод, графит и алмаз «родственники». Но как, же так, ведь углерод – это газ, а графит и алмаз, твёрдые вещества, обладающие кристаллическими решётками, но графит – «пишет», а алмаз настолько твёрдый, что им можно резать стекло и металлы, и украшать ювелирные изделия! Нам стало интересно. Оказывается, стержень (грифель) простого карандаша - это специально обработанная смесь графита, глины, воска. Когда мы рисуем, происходит расслоение кристаллической решётки графита и его атомы ложатся на поверхность шестиугольными плоскостями, а в состав цветных карандашей графит не входит! Просто так, для справки, приведу ориентировочный состав цветного карандаша: Органический краситель пластификатор (стеарин, например, из которого делают свечки) тальк (кстати, самый мягкий минерал по шкале Мооса) каолин (белая глина, её используют в производстве фарфора и ещё в косметике) клей КМЦ (KарбоксиМетилЦеллюлоза) - здесь связующее вещество. О как интересно! Мы подготовили небольшое сообщение о карандаше, а учитель предложила расширить эту тему и превратить её в исследовательский проект.

Скачать:

Предварительный просмотр:

МОУ «СОШ № 2 г. Ершов Саратовская область»

Исследовательский проект

Углерод, графит, алмаз

Бакаева Анастасия

8 «А» класс

руководитель: учитель физики I категории Филиппова Е.В.

2015

Введение

Основная часть

  1. Историческая справка
  1. Углерод
  1. Графит
  1. Алмаз

Практическая часть

  1. Изготовление моделей кристаллических решёток

Графит

Алмаз

  1. Выращивание кристаллов медного купороса

Заключение

Список литературы

Приложения

Введение

Всё началось с простого карандаша! А вернее с его стержня. На уроке физики мы проходили тему «Строение твёрдых, жидких и газообразных тел», и оказалось, что углерод, графит и алмаз «родственники». Но как, же так, ведь углерод – это газ, а графит и алмаз, твёрдые вещества, обладающие кристаллическими решётками, но графит – «пишет», а алмаз настолько твёрдый, что им можно резать стекло и металлы, и украшать ювелирные изделия! Мне стало интересно. Оказывается, стержень (грифель) простого карандаша - это специально обработанная смесь графита, глины, воска. Когда мы рисуем, происходит расслоение кристаллической решётки графита и его атомы ложатся на поверхность шестиугольными плоскостями, а в состав цветных карандашей графит не входит! Просто так, для справки, приведу ориентировочный состав цветного карандаша:

  • Органический краситель
  • пластификатор (стеарин, например, из которого делают свечки)
  • тальк (кстати, самый мягкий минерал по шкале Мооса)
    каолин (белая глина, её используют в производстве фарфора и ещё в косметике)
  • клей КМЦ (KарбоксиМетилЦеллюлоза) - здесь связующее вещество.

О как интересно!

Мы подготовили небольшое сообщение о карандаше, а учитель предложила расширить эту тему и превратить её в исследовательский проект.

Цели работы:

Изучить строение, физические свойства углерода, графита и алмаза

Узнать о применении углерода, графита и алмаза в технике, промышленности, ювелирном производстве и науке

Узнать о создании искусственных алмазов

Задачи

Создать наглядные пособия для изучения кристаллических тел (кристаллические решётки)

Вырастить самостоятельно кристалл медного купороса (он же тоже обладает кристаллической решёткой, как графит, алмаз и даже соль и сахар…)

Историческая справка.

Графит, алмаз и углерод известны с древности. Издавна известно, что графитом можно маркировать другой материал, и само название "графит", происходящее от греческого слова, означающего "писать", предложено А.Вернером в 1789. Однако история графита запутана, часто за него принимали вещества, обладающие сходными внешними физическими свойствами, например молибденит (сульфид молибдена), одно время считавшийся графитом. Среди других названий графита известны "черный свинец", "карбидное железо", "серебристый свинец". В 1779 К.Шееле установил, что графит можно окислить воздухом с образованием углекислого газа. Впервые алмазы нашли применение в Индии, а в Бразилии драгоценные камни приобрели коммерческое значение в 1725; месторождения в Южной Африке были открыты в 1867. В 20 в. основными производителями алмазов являются ЮАР, Заир, Ботсвана, Намибия, Ангола, Сьерра-Леоне, Танзания и Россия. Искусственные алмазы, технология которых была создана в 1970, производятся для промышленных целей. «Углерод встречается в природе как в свободном, так и в соединенном состоянии, в весьма различных формах и видах. В свободном состоянии углерод известен по крайней мере в трех видах: в виде угля, графита и алмаза. В состоянии соединений углерод входит в состав так называемых органических веществ, т.е. множества веществ, находящихся в теле всякого растения и животного. Он находится в виде углекислого газа в воде и воздухе, а в виде солей углекислоты и органических остатков в почве и массе земной коры. Разнообразие веществ, составляющих тело животных и растений, известно каждому. Воск и масло, скипидар и смола, хлопчатая бумага и белок, клеточная ткань растений и мускульная ткань животных, винная кислота и крахмал – все эти и множество иных веществ, входящих в ткани и соки растений и животных, представляют соединения углеродистые. Область соединений углерода так велика, что составляет особую отрасль химии, т.е. химии углеродистых или, лучше, углеводородистых соединений».

Углерод

Растения добывают углерод из углекислого газа - двуокиси углерода - содержащегося в атмосфере, и используют его как строительный материал для корней, стеблей и листьев. Животные получают его, поедая эти растения. А в почве он накапливается при разложении тел умерших существ. Из всех форм существования чистого углерода наиболее известным и, возможно, наиболее ценным для людей является уголь. Он примерно на 4/5 состоит из углерода, а остаток составляют водород и другие элементы. Ценность угля проистекает из химических свойств углерода, главным из которых является то, что он охотно взаимодействует с кислородом. Этот процесс протекает при сжигании угля на воздухе, при этом выделяется большое количество тепловой энергии, которую можно использовать для самых различных целей. Однако углерод в неживой природе можно обнаружить не только в виде угля. Две другие формы его существования в чистом виде, резко отличающиеся друг от друга,- графит и алмаз. Графит очень мягкий и жирный на ощупь. Он служит прекрасным смазочным материалом для многих механизмов. И еще, как вы знаете, из него изготовляют грифели карандашей. В этом случае графит смешивается с глиной для уменьшения его мягкости. Алмазы, напротив, являются самыми прочными из веществ, известных человеку. Их используют для создания особо прочных резцов, а также ювелирных украшений. Атомы углерода могут образовывать связи между собой и с атомами других элементов. В результате получается огромное множество углеродных соединений. Углерод входит в состав растений и животных (~18 %). Кругооборот углерода в природе включает биологический цикл, выделение СО 2 в атмосферу при сгорании ископаемого топлива , из вулканических газов, горячих минеральных источников, из поверхностных слоев океанических вод и др. Биологический цикл состоит в том, что углерод в виде СО 2 поглощается из тропосферы растениями. Затем из биосферы вновь возвращается в геосферу : с растениями углерод попадает в организм животных и человека, а затем при гниении животных и растительных материалов - в почву и в виде СО 2 - в атмосферу. В парообразном состоянии и в виде соединений с азотом и водородом углерод обнаружен в атмосфере Солнца , планет, он найден в каменных и железных метеоритах . Углерод реагирует со многими элементами с образованием карбидов (Карби́ды - соединения металлов и неметаллов с углеродом ). Углерод широко используется в металлургии. (Металлургия - совокупность связанных между собой отраслей и стадий производственного процесса от добычи сырья до выпуска готовой продукции - чёрных и цветных металлов и их сплавов ). Благодаря способности углерода образовывать полимерные цепочки, существует огромный класс соединений на основе углерода, которых значительно больше, чем неорганических, и изучением которых занимается органическая химия . Среди них наиболее обширные группы: углеводороды , белки , жиры и др. Углерод играет огромную роль в жизни человека. Его применения столь же разнообразны, как сам этот многоликий элемент. Углерод является основой всех органических веществ. Любой живой организм состоит в значительной степени из углерода. Углерод - основа жизни. Источником углерода для живых организмов обычно является углекислый газ из атмосферы или воды. В результате фотосинтеза он попадает в биологические пищевые цепи, в которых живые существа пожирают друг друга или останки друг друга и тем самым добывают углерод для строительства собственного тела. Биологический цикл углерода заканчивается либо окислением и возврашением в атмосферу, либо захоронением в виде угля или нефти. Углерод в виде ископаемого топлива: угля и углеводородов (нефть , природный газ ) - один из важнейших источников энергии для человечества . Углерод в сталелитейной промышленности один из важнейших компонентов сплавов железо-углерод (производство чугуна и стали ). Углерод входит в состав атмосферных аэрозолей, в результате чего может изменяться региональный климат, уменьшаться количество солнечных дней. Частицы углерода поглощают солнечное излучение, что может вызвать нагревание поверхности Земли. Углерод поступает в окружающую среду в виде сажи в составе выхлопных газов автотранспорта, при сжигании угля на ТЭС (Тепловая электростанция), при открытых разработках угля, подземной его газификации, получении угольных концентратов и др. Концентрация углерода над источниками горения 100-400 мкг/м³, крупными городами 2,4-15,9 мкг/м³, сельскими районами 0,5 - 0,8 мкг/м³. С газоаэрозольными выбросами АЭС в атмосферу поступает (6-15) 10 9 Бкг/сут углекислого газа. Высокое содержание углерода в атмосферных аэрозолях ведет к повышению заболеваемости населения, особенно верхних дыхательных путей и легких . Профессиональные заболевания - в основном антракоз и пылевой бронхит . Содержание углерода в атмосферном воздухе максимальная разовая 0,15, среднесуточная 0,05 мг/м³. Токсическое действие углерода, вошедшего в состав молекул белков (особенно в ДНК и РНК ), определяется радиационным воздействием бета частиц и ядер отдачи азота и трансмутационным эффектом - изменением химического состава молекулы в результате превращения атома углерода в атом азота.

Графит

Графит (назван Абрахамом Готтлобом Вернером в 1789 г, (с греческого графен - «тянуть/писать», использовался в карандашах) - один из самых обычных аллотропов углерода. Встречается в природе. Графит является самой устойчивой формой углерода при стандартных условиях. Применяется для изготовления электродов , нагревательных элементов, твердых смазочных материалов, наполнителя пластмасс, замедлителя нейтронов в ядерных реакторах , стержней карандашей , при высоких температурах и давлениях (более 2000 °C и 5 ГПа) для получения синтетического алмаза.

Алмаз


Hobby-live.ru

www.encycl.yandex, www.krugosvet, www.rmika.

И алмаз, и графит — это разные формы одного и того же элемента — углерода. У мягкого, крошащегося графита и у самого твердого кристалла в мире одна и та же формула — С. Как такое возможно?

Свойства алмаза и графита

Алмазы встречаются в природе в хорошо выраженной кристаллической форме. Это прозрачный и чаще всего бесцветный кристалл, хотя бывают и алмазы, окрашенные в голубой, красный и даже черный цвета. Такое цветовое отступление от правила связано с особенностями природных условий формирования кристалла и наличия в нем примесей. Очищенный и отшлифованный алмаз приобретает особый блеск, который и оценили люди.

Алмазы хорошо отражают свет и, обладая сложной формой, хорошо его преломляют. Это дает знамений блеск и перелив очищенного кристалла. Он является проводником тепла, но по отношению к электричеству является изолятором.

Графит представляет собой антипод алмаза. Это не кристалл, а совокупность тонких пластинок. Он черный с серым отливом. По внешнему виду напоминает сталь с преобладанием чугуна.

Несмотря на стальной вид, на ощупь он жирный, а при использовании оказывается еще и мягким. При малейшем надавливании он крошится, что и привлекает человека, использующего графит в качестве средства запечатления информации на бумаге.

Графит, как и алмаз, является хорошим проводником тепла, но, в отличие от своего собрата по молекулярному строению, хорошо проводит и электричество.

Этих разных представителей полиморфности молекулярного углерода отличает друг от друга только одно — строение молекулярной решетки. Все остальное — лишь следствие главного.

В графите кристаллическая решетка организована по плоскостному принципу. Все его атомы размещены в шестиугольнике, которые находятся в одной плоскости. Поэтому связи между атомами разных шестиугольников такие непрочные, а сам графит слоистый, и его слои плохо связаны друг с другом. Такое строение кристаллической решетки определяет его мягкость и разнообразную полезность, но сам графит при этом разрушается. Однако именно такое строение кристаллической решетки позволяет, используя особые условия и другие вещества, сделать из графита алмаз. Такие же процессы происходят с этим минералом в природе при аналогичных условиях.

Алмазная решетка построена по принципу объемных связей всех с каждым и всех со всеми. Атомы образуют правильный тетраэдр. Атом в каждом тетраэдре окружен другими атомами, каждый из которых образует вершину другого тетраэдра. Получается, что тетраэдров в каждом кусочке алмаза гораздо больше, чем молекул, образующих эти тетраэдры, поскольку каждый из тетраэдров является частью другого тетраэдра. По этой причине алмаз является самым неразрушимым минералом.

Судьба углерода в графите и алмазе

Углерод относится к самым массовым элементам биосферы и всей планеты Земля. Он в тех или иных состояниях присутствует в атмосфере (углекислый газ), в воде (растворенный углекислый газ и иные соединения) и в литосфере. Здесь, в тверди земной, он входит в состав больших залежей угля, нефти, природного газа, торфа и т.п. Но в чистом виде он представлен залежами алмаза и графита.

Больше всего углерода сконцентрировано в живых организмах. Любые организмы строят свое тело из углерода, концентрация которого в живых телах превышает содержание углерода в неживой материи. Мертвые организмы оседают на поверхности литосферы или океана. Там они разлагаются в разных условиях, образуя месторождения, богатые углеродом.

Происхождение чистых залежей алмазов и графита вызывает много споров. Есть мнение, что это бывшие организмы, попавшие в особые условия и минерализовавшиеся наподобие угля. Считается также, что алмазы имеют магматическое происхождение, а графит — метаморфическое. Это означает, что в концентрации алмазов на планете участвуют сложные процессы в недрах земли, где самопроизвольно в присутствии кислорода возникает взрыв и горение. В результате взаимодействия молекул метана и кислорода и возникают кристаллы алмаза. При этих же процессах, но в определенных условиях возможно появление и графита.

Как получить из графита алмаз

Получение при современном уровне развития химии давно не является проблемой. То, что природа делает за миллионы лет, человек может сделать за гораздо более короткий срок. Главное — воспроизвести условия, в которых в природе одна форма чистого углерода переходила в другую, то есть создать высокую температуру и очень высокое давление.

Впервые такие условия были созданы с помощью взрыва. Взрыв — это мгновенное горение под большим давлением. После того как собрали то, что удалось собрать, выяснилось, что в графите появились маленькие алмазы. Такое фрагментарное превращение произошло потому, что взрыв создает большое разнообразие давления и температуры. Там, где создались условия для перехода из графита в алмаз, это и произошло.

Эта неустойчивость процессов сделала взрывы неперспективными для производства алмазов из графита. Ученых это, однако, не остановило, и они с упорством продолжали подвергать графит всяким испытаниям в надежде заставить его стать алмазом. Стабильный результат дало нагревание графитового бруска импульсами до температуры в 2000°С, что дало возможность получить алмазы значимых размеров.

Опыты с высоким давлением дали неожиданные результаты — графит превращался в алмаз, но при уменьшении давления переходил в свое исходное состояние. Стабильно уменьшить расстояние между атомами углерода только с помощью одного давления не удавалось. Тогда стали сочетать давление и высокую температуру. Наконец, удалось выяснить диапазон сочетаний температуры и давления, при котором можно получить кристаллы алмаза. Правда, при этом получался только технический алмаз, использование которого в ювелирном деле было затруднено.

Кроме больших затрат на энергетическое обеспечение процесса перевода графита в алмаз существовала еще одна проблема — при увеличении длительности воздействия высокой температурой начинается графитизация алмаза. Все эти тонкости усложняют промышленное производство алмазов. По этой причине в природе, крайне разрушительная для нее, остается актуальной и прибыльной.

Чтобы получить алмаз, предназначенный для ювелирных целей, стали выращивать кристаллы, используя затравку. Готовый кристалл алмаза подвергался воздействию температуры в 1500°, что стимулировало рост сначала быстрый, а потом медленный. Чем больше кристалл, тем медленнее он рос. Этот эффект сделал интересный опыт лишь опытом, поскольку его производство в промышленных масштабах стало нерентабельным. Не улучшило ситуацию и применение метана в качестве «подкормки» растущего алмаза. При высоких давлении и температуре метан разрушается до углерода и водорода. Этот углерод и является «кормом» для алмаза.

Применение алмаза и графита

Оба минерала широко используются в промышленности.

Алмазы применяют:

  • в электротехнике;
  • приборостроении;
  • радиоэлектронике;
  • на буровых установках
  • в ювелирном деле.

Графит используется при:

  • производстве тиглей и иного огнеупорного оборудования;
  • изготовлении смазочных материалов;
  • изготовлении карандашей;
  • производстве оборудования для электроугольной промышленности.

Несмотря на разнообразие применения как графита, так и алмаза в различных отраслях промышленности, можно смело говорить о большей пользе графита. Алмаз по причине идеальности своей кристаллической решетки инертен. Его можно использовать только как алмаз. Большая часть добываемых в природе алмазов уходит на нужды ювелирной промышленности, поскольку минерал является одним из самых дорогих драгоценных камней, становясь бриллиантом, он стимулирует оборот денег, и это его основное свойство в экономике.

Графит, изъятый из природы, становится не самодостаточной ценностью, а великим тружеником производства. Благодаря своим свойствам он используется и в своем истинном, природном виде, то есть как графит, и в качестве средства, на основе которого могут быть получены новые вещества, например, тот же алмаз.

Для обычного человека алмаз и графит – это два совершенно не похожих и никак не связанных друг с другом элемента. Алмаз вызывает ассоциации с переливающимися драгоценностями, вспоминается выражение «блестит как алмаз». Графит – нечто серое, то, из чего обычно делают карандашные грифели.

Трудно поверить, что оба минерала – это одно и то же вещество разной формы обработки.

Понятие и основные характеристики минералов

Алмазом называют прозрачный кристалл, не имеющий цвета, обладающий высокими характеристиками преломления света. Выделяют следующие основные свойства минерала:

Природа зарождает как алмазы определенных форм, так и в нескольких кристаллических формах, что обусловлено его внутренним строением. Ярко выраженные кристаллы имеют форму куба или тэтраэдра с плоскими гранями. Иногда грани кажутся рельефными из-за наличия невидимых глазу многочисленных наростов и преобразований.

Хотя многие считают алмаз самым прочным материалом на свете, но науке известно вещество превосходящее алмаз по прочности более чем на 11% — «гипералмаз».

Графит представляет собой кристаллическое вещество серо-черного цвета, обладающее металлическим блеском. По составу графит имеет слоистую структуру, его кристаллы состоят из мелких тонких пластинок. Это очень хрупкий минерал, напоминающий по внешнему виду сталь или чугун. У графита низкая теплоемкость, но высокая температура плавления. Кроме того, этот минерал:


На ощупь графит жирный, а при проведении по бумаге оставляет следы. Это происходит из-за того, что атомы кристаллической решетки слабо связаны.

Отличие графита от алмаза, особенности строения и процесс перехода одного минерала в другой

Алмаз и графит – аллотропные по отношению друг к другу минералы, то есть имеют различные свойства, но являются разными формами углерода. Их основное отличие заключается лишь в химическом строении кристаллической решетки.

Кристаллическая решетка алмаза имеет вид тэтраэдра, в котором каждый атом окружен еще 4 атомами и является вершиной соседнего тэтраэдра, образуя бесконечное множество атомов, имеющих прочные ковалентные связи.

Графит на атомном уровне состоит из пластов шестиугольников с вершинами-атомами. Атомы хорошо связаны между собой только на уровне пластов, но пласты между собой сильной связи не имеют, что делает графит мягким и нестойким к разрушению. Именно эта особенность и позволяет получить из графита алмаз.

Физические и химические свойства алмаза и графита хорошо видны из таблицы.

Характеристика
Строение атомной решетки Кубическая форма Гексагональная
Светопроводимость Хорошо проводит свет Не пропускает свет
Электропроводимость Не обладает Имеет хорошую электропроводимость
Связи атомов Пространственные Плоскостные
Структура Твердость и хрупкость Слоистость
Максимальная температура, при которой минерал остается неизменным 720 по Цельсию 3700 по Цельсию
Цвет Белый, голубой, черный, желтый, бесцветный Черный, серый, стальной
Плотность 3560 кг/м.куб. 2230 кг/м.куб.
Использование Ювелирное дело, промышленность Литейное производство, электроугольная промышленность.
Твердость по шкале Мооса 10 1

Химическая формула алмаза и графита одна и та же – углерод (С), но процесс создания в природе разный. Алмаз возникает при очень высоких давлениях и мгновенном охлаждении, а графит, наоборот, при низком давлении и высокой температуре.

Выделяют следующие методы получения алмазов:

Процесс алмаза в графит аналогичен. Разница лишь в показателях давления и температуры.

Месторождение минералов

Алмазы пролегают на глубинах более 100 км при температуре 1300 ̊С. От взрывной волны вступает в действие кимберлитовая магма, образуя так называемые кимберлитовые трубки, которые и являются коренными месторождениями алмазов.

Кимберлитовая трубка названа в честь африканской провинции Кимберли, где она и была впервые открыта. Породы с алмазными залежами называют кимберлитами.

Самые известные ныне месторождения находятся в Индии, Южной Африке и в России. На коренных месторождениях, состоящих из кимберлитовых и лампроитовых трубок, добывают до 80% всех алмазов.

Найти алмазы в добытой породе помогают рентгеновские лучи. Большинство найденных камней используется в промышленности, так как не обладают достаточными характеристиками для ювелирной области. Промышленные камни разделяют на 3 вида:

  • борт – мелкие камни, имеющие зернистую структуру;
  • баллас – камни круглой или грушевидной формы;
  • карбонадо – камень черного цвета, получивший свое название из-за сходства с углем.

Любопытно, что наиболее крупные и выдающиеся по характеристикам алмазы получают свое уникальное название. Самые известные из них – «Шах», «Звезда Минаса», «Кохинур», «Звезда Юга», «Президент Варгас», «Минас-Жерайс», «Английский алмаз Дрездена» и др.

Графит образуется в результате видоизменения осадочных пород. Мексиканские, ногинские и мадагаскарские графитовые месторождения богаты рудой с графитом низкого качества. Менее распространенные – ботогольский и цейлонский тип, отличаются рудой, богатой высоким содержанием графита. Крупнейшие известные месторождения находятся на Украине и в Краснодарском крае.

Сфера применения

Алмаз и графит используют гораздо шире, чем может показаться на первый взгляд. Алмазы нашли свое применение в следующих сферах:


В процентном соотношении использования алмазов выглядит так:

  1. Инструменты, машинные детали – 60%.
  2. Обрамление шлифовочных кругов -10%.
  3. Переработка проволоки-10%.
  4. Бурение скважин – 10%.
  5. Ювелирные изделия, мелкие детали – 10%.

Что касается графита, то в чистом виде он практически не используется, а подвергаются предварительной обработке, хотя в разных сферах используется графит разного качества. Для канцелярских карандашей используют графит высочайшего качества. Наиболее широкое применение нашло в литейном производстве, обеспечивая гладкую поверхность различных форм стали. Здесь используется практически необработанный графит.

Электроугольная промышленность наряду с природным использует искусственно созданный графит, также получивший широкое применение благодаря особой чистоте и постоянству состава. Электропроводимость сделала графит материалом для электродов электрических приборов. В металлургии используется как смазочный материал.

Алмаз и графит – одинаковые по составу, но по-своему уникальные вещества. Польза графита для различных отраслей промышленности гораздо выше алмаза.

Алмаз же, призванный радовать своей красотой, неоценим для экономики, принося огромные доходы от применения в ювелирной промышленности.

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Фрисолак описание и состав Фрисолак описание и состав Коричневые кожаные сапоги Коричневые кожаные сапоги Как завязывать шарф на пальто: разные виды узлов Как завязать круговой шарф на пальто Как завязывать шарф на пальто: разные виды узлов Как завязать круговой шарф на пальто